Vol. 15
Latest Volume
All Volumes
PIERL 123 [2025] PIERL 122 [2024] PIERL 121 [2024] PIERL 120 [2024] PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2010-07-01
Frequency-Selective Energy Tunneling in Wire-Loaded Narrow Waveguide Channels
By
Progress In Electromagnetics Research Letters, Vol. 15, 153-161, 2010
Abstract
Frequency-dependent energy tunneling that results in full transmission of electromagnetic energy through wire-loaded sharp waveguide bends is demonstrated by full-wave simulations. The frequencies at which the tunneling takes place is predicted by a numerical method that involves a variational impedance formula based on Green function of a probe-excited parallel plate waveguide. Analogous tunneling effects have also been previously observed in waveguide bends filled with epsilon-near-zero media. However, since the frequency response in the wire-loaded waveguides can be tailored by simply modifying the lengths of the wires, the phenomenon is scalable over a broad range of frequencies and can be potentially exploited in various filtering and multiplexing applications.
Citation
Omar Farooq Siddiqui, and Omar M. Ramahi, "Frequency-Selective Energy Tunneling in Wire-Loaded Narrow Waveguide Channels," Progress In Electromagnetics Research Letters, Vol. 15, 153-161, 2010.
doi:10.2528/PIERL10031809
References

1. Silveirinha, M. G. and N. Engheta, "Tunneling of electromagnetic energy through sub-wavelength channels and bends using Epsilon-Near-Zero (ENZ) materials," Phys. Rev. Lett., Vol. 97, No. 15, 157403-157406, 2006.
doi:10.1103/PhysRevLett.97.157403

2. Alu, A. and N. Engheta, "Light squeezing through arbitraily shaped plasmonic channels and sharp bends," Physical Review B, Vol. 78, 035440-035445, 2008.
doi:10.1103/PhysRevB.78.035440

3. Alu, A., M. G. Silveirinha, and N. Engheta, "Transmissionline analysis of Epsilon-Near-Zero (ENZ)-filled narrow channels," Phsyical Review E, Vol. 78, No. 15, 016604-016613, 2008.
doi:10.1103/PhysRevE.78.016604

4. Alu, A. and N. Engheta, "Dielectric sensing in Epsilon-Near-Zero narrow waveguide channels," Phsyical Review B, Vol. 78, 045102-045106, 2008.
doi:10.1103/PhysRevB.78.045102

5. Kashanianfard, M. and O. Ramahi, "A method to realize epsilon-near-zero-like materials for waveguide discontinuities," International Microwave Symposium Digest, 141-144, Boston, MA, 2009.

6. Collins, R., Field Theory of Guided Waves, John Wiley (Sponsored by IEEE Press), 1991.

7. Kashanianfard, M., "Electromagnetic wave transmission through sub-wavelength channels and bends using metallic wires,", M.S. thesis, Dept. Elect. and Comp. Eng., Univ. ofWaterloo, Waterloo, Canada, 2009.