Vol. 104
Latest Volume
All Volumes
PIER 180 [2024] PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2010-05-12
Transfer Function and Compact Distributed RLC Models of Carbon Nanotube Bundle Interconnets and Their Applications
By
Progress In Electromagnetics Research, Vol. 104, 69-83, 2010
Abstract
According to the derived transfer function using different orders of approximation, stability and signal transmission analysis of a driven metallic single-walled carbon nanotube (SWCNT) bundle interconnect are performed. It is shown that as the length of SWCNT bundle interconnect increases, the poles will be closer to the imaginary axis, which causes the transmitted signal response tends to be more damping. Using the fourth-order approximation of the transfer function, the transmitted pulse waveform along the SWCNT bundle interconnect is captured accurately, with signal overshoot and time delay examined. Further, a complete physical model for the transient response of carbon nanotube bundle interconnect is derived, which can also accurately predict the transient response of carbon nanotube bundle interconnect including time delay and crosstalk.
Citation
Jiang-Peng Cui, and Wen-Yan Yin, "Transfer Function and Compact Distributed RLC Models of Carbon Nanotube Bundle Interconnets and Their Applications," Progress In Electromagnetics Research, Vol. 104, 69-83, 2010.
doi:10.2528/PIER10031011
References

1. Li, H., C. Xu, N. Srivastava, and K. Banerjee, "Carbon nanomaterials for next-generation interconnects and passives: Physics, status, and prospects," IEEE Trans. Electron. Device, Vol. 56, No. 9, 1799-1821, Sep. 2009.
doi:10.1109/TED.2009.2026524

2. Burke, P. J., "An RF circuit model for carbon nanotubes," IEEE Trans. Nanotech., 55-58, Mar. 2003.
doi:10.1109/TNANO.2003.808503

3. Naeemi, A. and J. D. Meindl, "Compact physical model for multiwall carbon nanotube interconnect," IEEE Trans. Electron. Device Lett., Vol. 27, No. 5, 338-340, May 2006.
doi:10.1109/LED.2006.873765

4. Li, H., W. Y. Yin, K. Banerjee, and J. F. Mao, "Circuit modeling and performance analysis of multi-walled carbon nanotube interconnects ," IEEE Trans. Electron. Device, Vol. 55, No. 6, 1328-1337, Jun. 2008.
doi:10.1109/TED.2008.922855

5. Maffucci, A., G. Miano, and F. Villone, "A new circuit model for carbon nanotube interconnects with diameter-dependent parameters," IEEE Trans. Nanotech., Vol. 8, No. 3, 345-354, May 2009.
doi:10.1109/TNANO.2008.2010545

6. Nieuwoudt, A. and Y. Massoud, "Understanding the impact of inductance in carbon nanotube bundles for VLSI interconnect using scalable modeling techniques," IEEE Trans. Nanotech., Vol. 5, No. 6, 758-765, Nov. 2006.
doi:10.1109/TNANO.2006.883480

7. Haruehanroengra, S. and W. Wang, "Analyzing conductance of mixed carbon-nanotube bundles for interconnect applications," IEEE Electron. Device Lett., Vol. 28, No. 8, 756-759, Aug. 2007.
doi:10.1109/LED.2007.901584

8. Wang, W., S. Haruehantoengra, L. Shang, and M. Liu, "Inductance of mixed carbon nanotube bundles," Micro. & Nano. Lett., Vol. 2, No. 2, 35-39, Jun. 2007.
doi:10.1049/mnl:20070027

9. Rossi, D., J. M. Cazeaux, C. Metra, and F. Lombardi, "Modeling crosstalk effects in CNT bus architectures," IEEE Trans. Nanotech., Vol. 6, No. 2, 133-145, Mar. 2007.
doi:10.1109/TNANO.2007.891814

10. Pu, S. N., W. Y. Yin, J. F. Mao, and Q. H. Liu, "Crosstalk prediction of single- and double-walled carbon-nanotube (SWCNT/DWCNT) bundle interconnects," IEEE Trans. Electron. Devices, Vol. 55, No. 4, 560-568, Apr. 2009.
doi:10.1109/TED.2009.2014429

11. Naeemi, A., R. Sarvari, and J. D. Meindl, "Performance comparison between carbon nanotube and copper interconnects for gigascale integration (GSI) ," IEEE Electron. Device Lett., Vol. 26, No. 2, 84-86, Feb. 2005.
doi:10.1109/LED.2004.841440

12. Naeemi, A. and J. D. Meindl, "Design and performance modeling for single-walled carbon nanotubes as local, semi-global, and global interconnects in gigascale integrated systems," IEEE Trans. Electron. Devices, Vol. 54, No. 1, 26-37, 2007.
doi:10.1109/TED.2006.887210

13. Srivastava, N., H. Li, F. Kreupl, and K. Banerjee, "On the applicability of single-walled carbon nanotubes as VLSI interconnects," IEEE Trans. Nanotech., Vol. 8, No. 4, 542-559, Jul. 2009.
doi:10.1109/TNANO.2009.2013945

14. Fathi, D. and B. Forouzandeh, "A novel approach for stability analysis in carbon nanotube interconnects," IEEE Electron. Device Lett., Vol. 30, No. 5, 475-477, May 2009.
doi:10.1109/LED.2009.2017388

15. Chen, W. C., W. Y. Yin, J. Lei, and Q. H. Liu, "Electrothermal characterization of single-walled carbon nanotube (SWCNT) interconnect arrays," IEEE Trans. Nanotech., Vol. 8, No. 6, 718-728, 2009.
doi:10.1109/TNANO.2009.2019725

16. Patil, N., J. Deng, A. Lin, H. S. P. Wong, and S. Mitra, "Design methods for misaligned and mispositioned carbon-nanotube immune circuits," IEEE Trans. Computer-aided Design of Integrated Circuits and Systems, Vol. 27, No. 10, 1725-1746, Oct. 2008.
doi:10.1109/TCAD.2008.2003278

17. Close, G. F. and H. S. P. Wong, "Assembly and electrical characterization of multiwall carbon nanotube interconnects," IEEE Trans. Nanotech., Vol. 7, No. 5, 596-600, Sep. 2008.
doi:10.1109/TNANO.2008.927373

18. Patil, N., A. Lin, E. R. Myers, K. Ryu, A. Badmaev, C. W. Zhou, and H. S. P. Wong, "Wafer-scale growth and transfer of aligned single-walled carbon nanotubes," IEEE Trans. Nanotech., Vol. 8, No. 4, 498-504, Jul. 200.
doi:10.1109/TNANO.2009.2016562

19. Lin, A., N. Patil, H. Wei, S. Mitra, and H. S. P. Wong, "ACCNT-a metallic-CNT-tolerant design methodology for carbon-nanotube VLSI: concepts and experimental demonstration," IEEE Trans. Electron. Device, Vol. 56, No. 12, 2969-2978, Dec. 2009.
doi:10.1109/TED.2009.2033168

20. Banerjee, K. and A. Mehrotra, "Analysis of on-chip inductance effects for distributed RLC interconnects," IEEE Trans. Computeraided Designs of Integrated Circuits and Systems, Vol. 21, No. 5, 904-915, Aug. 2002.
doi:10.1109/TCAD.2002.800459

21. Davis, J. A. and J. D. Meindl, "Compact distributed RLC interconnect models --- Part I: Single line transient, time delay, and overshoot expressions," IEEE Trans. Electron. Device, Vol. 47, No. 11, 2068-2077, Nov. 2000.
doi:10.1109/16.877168

22. Davis, J. A. and J. D. Meindl, "Compact distributed RLC interconnect models --- Part II: Coupled line transient expressions and peak crosstalk in multilevel networks," IEEE Trans. Electron. Device, Vol. 47, No. 11, 2078-2087, Nov. 2000.
doi:10.1109/16.877169

23. Venkatesan, R., J. A. Davis, and J. D. Meindl, "Compact distributed RLC interconnect models --- Part III: Transients in single and coupled lines with capacitive load termination," IEEE Trans. Electron. Device, Vol. 50, No. 4, 1081-1093, Apr. 200.
doi:10.1109/TED.2003.812507

24. Venkatesan, R., J. A. Davis, and J. D. Meindl, "Compact distributed RLC interconnect models --- Part IV: Unified models for time delay, crosstalk, and repeater insertion," IEEE Trans. Electron. Device, Vol. 50, No. 4, 1094-1102, Apr. 2003.
doi:10.1109/TED.2003.812509

25. Fathi, D. and B. Forouzandeh, "Time domain analysis of carbon nanotube interconnects based on distributed RLC model," Nano., Vol. 4, No. 1, 13-21, 2009.
doi:10.1142/S1793292009001484

26. Fathi, D., Forouzandeh, S. Mohajerzadeh, and R. Sarvari, "Accurate analysis of carbon nanotube interconnects using transmission line model," Micro & Nano Lett., Vol. 4, No. 2, 116-121, 2009.
doi:10.1049/mnl.2009.0045

27. Davis, J. A., A hierarchy of interconnect limits and opportunities for gigascale integration (GSI) , Ph.D. dissertation, Univ. Georgia Institute of Technology, Mar. 1999.

28. Sarto, M. S., A. Tamburrano, and M. D'Amore, "New electron-waveguide-based modeling for carbon nanotube interconnects," IEEE Trans. Nanotechnology, Vol. 8, No. 2, 214-225, 2008.
doi:10.1109/TNANO.2008.2010253

29. Raguraman, V., Multilevel interconnect architectures for gigascale integration (GSI), Ph.D. dissertation, Georgia Institute of Technology, Feb. 2003.

30. Khalaj-Amirhosseini, M., "Closed form solutions for nonuniform transmission lines," Progress In Electromagnetics Research B, Vol. 2, 243-258, 2008.
doi:10.2528/PIERB07111502

31. Chiu, C.-N. and I.-T. Chiang, "A fast approach for simulating long-time response of high-speed dispersive and lossy interconnects terminated with nonlinear loads," Progress In Electromagnetics Research, Vol. 91, 153-171, 2009.
doi:10.2528/PIER09021502

32. Wang, Y. J., W. J. Koh, C. K. Lee, and K. Y. See, "Electromagnetic coupling analysis of transient signal through slots or apertures perforated in a shielding metallic enclosure using FDTD methodology," Progress In Electromagnetics Research, Vol. 36, 247-264, 2002.
doi:10.2528/PIER02021701