Vol. 12
Latest Volume
All Volumes
PIERM 130 [2024] PIERM 129 [2024] PIERM 128 [2024] PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2010-06-02
A Novel Phase Retrieval Approach for Electromagnetic Inverse Scattering Problem with Intensity-Only Data
By
Progress In Electromagnetics Research M, Vol. 12, 229-245, 2010
Abstract
To measure the phase of signal with very high working frequency such as THz, and optics band is still a challenging problem. In this paper, based on the relationship between radiating current and measured intensity of electrical field a novel phase retrieval algorithm has been developed. As opposed to the existing approaches of phase retrieval where usually the Fourier coefficients of measured data will be firstly reconstructed, the proposed approach is to reconstruct the so-called radiating currents, with more physical meaning than the former. It has a much smaller number of freedoms of radiating current than that of measurements, which means that the obtained equations are over-determined. Thus one can efficiently model the intensity of measured electric field via the radiating part, and reconstruct it quickly and stably. The novelty is that this physical consideration 1) leads to efficiently avoiding false solutions due to the ill-posedness of phase retrieval problem, and 2) offers a good initial guess for inverse scattering based imaging algorisms. Importantly, a closed-form formulation of phase retrieve also has been derived when the intensity of incident wave is much stronger than one of the scattered wave, for example, for the weak scattering objects. Finally, several numerical experiments are provided to show the high performance of proposed algorithm.
Citation
Yin Xiang, Lianlin Li, and Fang Li, "A Novel Phase Retrieval Approach for Electromagnetic Inverse Scattering Problem with Intensity-Only Data," Progress In Electromagnetics Research M, Vol. 12, 229-245, 2010.
doi:10.2528/PIERM10030704
References

1. Crocco, L., M. D'Urso, and T. Isernia, "Inverse scattering from phaseless measurements of the total field on a closed curve," J. Opt. Soc. Amer., Vol. 21, No. 4, 622-630, Apr. 2004.
doi:10.1364/JOSAA.21.000622

2. Bucci, O. M., L. Crocco, M. D'Urso, and T. Isernia, "Inverse scattering from phaseless measurements of the total field on open lines," J. Opt. Soc. Amer., Vol. 23, No. 10, 2566-2577, Oct. 2006.
doi:10.1364/JOSAA.23.002566

3. Catapano, I., L. Crocco, M. Urso, and T. Isernia, "Advances in microwave tomography phaseless measurements and layered backgrounds," Proc. 2nd Int. Workshop on Advanced GPR, Vol. 183, No. 188, Delft, The Netherlands, May 2003.

4. Caorsi, S., A. Massa, M. Pastorino, and A. Randazzo, "Electromagnetic detection of dielectric scatterers using phaseless synthetic and real data and the memetic algorithm ," IEEE Trans. Geosci. Remote Sensing, Vol. 41, No. 12, 2745-2753, Dec. 2003.
doi:10.1109/TGRS.2003.815676

5. Franceschini, G., M. Donelli, R. Azaro, and A. Massa, "Inversion of phaseless total field data using a two-step strategy based on the iterative multiscaling approach," IEEE Trans. Geosci. Remote Sensing, Vol. 44, No. 12, 3527-3539, Dec. 2006.
doi:10.1109/TGRS.2006.881753

6. Maleki, M. H., A. J. Devaney, and A. Schatzberg, "Tomographic reconstruction from optical scattered intensities," J. Opt. Soc. Am. A, Vol. 10, 1356-1363, 1992.
doi:10.1364/JOSAA.9.001356

7. Maleki, M. H. and A. J. Devaney, "Phase retrieval and intensity-only reconstruction algorithms from optical diffraction tomography," J. Opt. Soc. Am. A, Vol. 10, 1086-1092, 1993.
doi:10.1364/JOSAA.10.001086

8. Takenaka, T., D. J. N. Wall, H. Harada, and M. Tanaka, "Reconstruction algorithm of the refractive index of a cylindrical object from the intensity measurements of the total field," Microwave Opt. Technol. Lett., Vol. 10, 182-188, 1997.
doi:10.1002/(SICI)1098-2760(19970220)14:3<182::AID-MOP15>3.0.CO;2-A

9. Devaney, A. J., "Diffraction tomographic reconstruction from intensity data," IEEE Trans. Imaging Process, Vol. 1, 221-228, 1992.
doi:10.1109/83.136598

10. Maleki, M. H., A. J. Devaney, and A. Schatzberg, "Phase retrieval and intensity-only reconstruction algorithms from optical diffraction tomography," J. Opt. Soc. Am. A, Vol. 10, 1086-1092, 1993.
doi:10.1364/JOSAA.10.001086

11. Gbur, G. and E. Wolf, "Hybrid diffraction tomography without phase information," J. Opt. Soc. Am. A, Vol. 19, 2149-2202, 2002.

12. Las-Heras, F. and T. Sarkar, "A direct optimization approach for source reconstruction and NF-FF transformation using amplitude-only data," IEEE Trans. Antennas. Propag., Vol. 50, No. 4, 500-510, Apr. 2002.
doi:10.1109/TAP.2002.1003386

13. Takenaka, T., D. J. N. Wall, H. Harada, M. Tanaka, and , "Reconstruction algorithm of the refractive index of a cylindrical object from the intensity measurements of the total field," Microwave Opt. Technol. Lett., Vol. 14, 182-188, 1997.
doi:10.1002/(SICI)1098-2760(19970220)14:3<182::AID-MOP15>3.0.CO;2-A

14. Caorsi, S., A. Massa, M. Pastorino, and A. Randazzo, "Electromagnetic detection of dielectric scatterers using phaseless synthetic and real data and the memetic algorithm," IEEE Trans. Geosci. Remote Sens., Vol. 41, 2745-2752, 2003.
doi:10.1109/TGRS.2003.815676

15. Li, L. L., H. Zheng, and F. Li, "Two-dimensional contrast source inversion method with phaseless data: TM case," IEEE Trans. Geosci. Remote Sens., Vol. 47, No. 6, 1719-1736, 2008.
doi:10.1109/TGRS.2008.2006360

16. Hislop, G., G. C. James, and A. Hellicar, "Phase retrieval of scattered fields," IEEE Trans. Antennas Propag., Vol. 55, 2332-2341, 2007.
doi:10.1109/TAP.2007.901937

17. Isernia, T., G. Leone, R. Pierri, and F. Soldovieri, "Role of the support and zero locations in phase retrieval by a quadratic approach," J. Opt. Soc. Am. A, Vol. 16, 1845-1856, 1999.
doi:10.1364/JOSAA.16.001845

18. Caorsi, S. and G. L. Gragnani, "Inverse-scattering method for dielectric objects based on the reconstruction of the nonmeasurable equivalent current density," Radio Science, Vol. 34, No. 1, 1-8, 1999.
doi:10.1029/1998RS900009

19. Chiappe, M. and G. L. Gragnani, "An analytical approach to the reconstruction of the radiating current in inverse electromagnetic scattering," Microwave Opt. Technol. Lett., Vol. 49, No. 2, 354-360, 2007.
doi:10.1002/mop.22125

20. Geffrin, J., P. Sabouroux, and C. Eyraud, "Free space experimental scattering database continuation: Experimental set-up and measurement precision ," Inverse Problems, Vol. 21, S117-S130, 2005.
doi:10.1088/0266-5611/21/6/S09

21. Xiang, Y., L. L. Li, and F. Li, "Inversion of phaseless total data by reconstruction the equivalent radiating current," 2008 Asia-Pacific Microwave Conference, (APMC 2008), 2008.