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Abstract—To measure the phase of signal with very high working
frequency such as THz, and optics band is still a challenging problem.
In this paper, based on the relationship between radiating current and
measured intensity of electrical field a novel phase retrieval algorithm
has been developed. As opposed to the existing approaches of phase
retrieval where usually the Fourier coefficients of measured data will
be firstly reconstructed, the proposed approach is to reconstruct the
so-called radiating currents, with more physical meaning than the
former. It has a much smaller number of freedoms of radiating current
than that of measurements, which means that the obtained equations
are over-determined. Thus one can efficiently model the intensity
of measured electric field via the radiating part, and reconstruct it
quickly and stably. The novelty is that this physical consideration
1) leads to efficiently avoiding false solutions due to the ill-posedness
of phase retrieval problem, and 2) offers a good initial guess for
inverse scattering based imaging algorithm. Importantly, a closed-form
formulation of phase retrieve also has been derived when the intensity
of incident wave is much stronger than one of the scattered wave, for
example, for the weak scattering objects. Finally, several numerical
experiments are provided to show the high performance of proposed
algorithm.

1. INTRODUCTION

Electromagnetic inverse scattering problem has been extensively
studied for years for its theoretical significations and widely
applications in medical imaging, industrial diagnostics, remote sensing,
application geophysics, etc. The aim of EM inverse scattering is to
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retrieve the support and dielectric properties of unknown objects in
a finite region by illuminating them with electromagnetic field and
measuring the induced field outside the region. Both the intensity and
phase information of the induced field are needed. However, the phase
measurement generally presents more considerable practical difficulties
and non-negligible hardware cost as the working frequency increases.
Also the phase is very sensitive to the probe shaking and tends to be
easily corrupted by noise in high frequency (especially beyond 10 GHz).
Recently, one of the research interests in EM inverse scattering problem
is on how to solve the problem without the phase information of the
measured field [1–12].

Many results on the EM inverse scattering problems with only-
intensity information have been reported in [1–8]. Except for the
methods based on linear approximations or a priori information of
the support of the objects [6–8], there are two popular ways to deal
with intensity-only data in the field of EM inverse scattering. One is to
use the intensity-only data directly in the inverse procedure, called as
one-step strategy [13, 14]. In this one-step strategy, the reconstruction
error is easily to be measured whereas the nonlinearity of the problem is
higher than that with full data case (FD, with the information of both
phase and intensity), which causes the optimization procedure easily
be trapped by local minimums and slow down the convergence [15].
An alternate is to reconstruct the phase of data from their amplitude
first, and then run a standard FD inverse procedure [1–5]. Obviously,
the accuracy and stability of phase retrieval will be the key issue to
obtain successful reconstruction of probed obstacles.

The present work mainly focuses on the phase retrieval where
the incident field is known at any position and the intensity of the
total field are measured by the receivers as carried out in many
practical applications [10–12, 16]. It is along the line of our previous
work [21] but gives more contents. Though many other excellent
algorithms of phase retrieval have been developed, how to avoid
the local solution by incorporating suitable prior information such
as support and zero-point information of unknown signals is still a
challenging problem [17]. For these exiting approaches, a commonly
used approach is to reconstruct the coefficients in the Fourier domain
with less physical meaning. As a matter of fact, due to the number
of Fourier coefficients to be reconstructed, even the reduced-order
Fourier transform, is much larger than one of independent data, the
intrinsic ill-posedness cannot be efficiently overcame. To address this
issue, the “originate” of measured data, i.e., the well-known radiating
current source, is tracked based on the so-called electrical integral
equation. As shown below, the freedom degree of radiating current
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denoted by the number of efficient singular vectors of Green’s function
usually is much lower than one of measured data. Consequently, the
original underdetermined problem is turned into an over determined
problem. Taking this point into account, a pleasing phase-retrieval
algorithm is proposed, in particular, the radiating current firstly
will be reconstructed by minimizing a cost function that relates the
incident field, the intensity-only total field and the modeled scattered
field, the coefficients of the series is retrieved iteratively, followed by
computing the phase by simple relation between radiating current and
the measured field. Our approach performs well for two reasons: 1)
only the radiating part can affect and be reflected by the scattered
field, 2) the number of the independent unknowns of the radiating
part limited by the number of the significant singular values of the
scatter operator, leading to a fast and stable convergence. Moreover,
the radiating part can give an estimation of the objects’ support in
multi-view case and can be used to reconstruct the non-radiating part
of the equivalent currents as well as the objects dielectric properties
directly in the inverse scattering step [18].

In Section 2, we first describe the relationship between the
measured electric field and the equivalent radiating current, derive the
corresponding cost function, and then discuss the method we use to
minimizing the cost function and retrieve the phase of measured data.
In Section 3, we test our phase-retrieval method with simulation and
experiment data, and give some imaging results. In the final section,
we conclude the paper and discuss the advantage of our method.

2. RECOVER PHASE INFORMATION FROM
AMPLITUDE-ONLY MEASUREMENT

2.1. Image Principles of Inverse Scattering

In this section some basic principles and notions involved in this paper
have been summarized for the convenience of discussion. For simplicity,
we just consider the two-dimensional scalar inverse scattering problem
in homogeneous background, which also can be generalized into the
three-dimensional full vectorial case along the same line. As shown
in Fig. 1, the object(s) to be detected are assumed to be located
in some region noted by the investigation domain. The unknown
object is illuminated with EM wave and the amplitude of total field
produced by the interaction between the object and incident wave is
measured at some positions denoted as observation domain (outside the
investigation domain). This procedure can be described by two integral
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Figure 1. The measurement setup.

equations called data equation and state equation respectively [1]:

Escatt (ρr) = Etot (ρr)− Einc (ρr)

= k2
b

∫

Dinv

Gd

(
ρr, ρ

′) · Etot

(
ρ′

)
χ

(
ρ′

)
dρ′, ρr ∈ Dobs, ρ′ ∈ Dinv (1)

Einc(ρ)=Etot(ρ)−k2
b

∫

Dinv

Gs

(
ρ, ρ′

)·Etot

(
ρ′

)
χ
(
ρ′

)
dρ

′
, ρ, ρ′∈Dinv (2)

where Einc, Escatt, Etot are the incident field, scattered field and total
field, respectively, kb is the background wave number, Dinv denotes
the investigation domain and Dobs denotes the observation domain,
Gd is the Green’s function mapping Dinv to Dobs, and Gs is the
Green’s function mapping Dinv to Dinv itself. The function χ(·) =
ε(·)/εb(·) − 1 + iσ(·)/ωεb(·) demonstrates the contrast distribution
of the unknown objects which is expected to be determined in the
inverse scattering problems, where ε is the dielectric permittivity of
the objects, εb is the one of the background, σ is the conductivity of
the objects. Since the unknown objects are all located inside Dinv, χ(·)
becomes zero outside that region. The two dimensional scalar Green’s
function is given by G(ρ, ρ′) = i

4H
(1)
0 (kb|ρ− ρ′|), expressed in terms

of the Hankel function H
(1)
0 of order zero and of the first kind. Indeed,

the product of the contrast function and the total field in Dinv is the
so-called contrast source defined by w(·) = χ(·)Etot(·), which implies
the equivalent current density on the supports of the objects. Above
two equations are the standpoints of electromagnetic inverse scattering
problem described in the frequency domain.
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2.2. Establishment of the Cost Function

In this subsection, we will investigate the relationship between
amplitude of total measured electric field and the radiating current.
If we only measure the amplitude information, Equation (1) can be
modified as:

|Etot (ρr)| =
∣∣∣∣∣∣
Einc (ρr) + k2

b

∫

Dinv

Gd

(
ρr, ρ

′) · w (
ρ′

)
dρ′

∣∣∣∣∣∣
, ρr∈Dobs,

ρ′∈Dinv(3)

It is noted that the scattering operator
∫

Dinv

dρ′Gd (ρr,ρ
′) ◦ is of narrow

bandwidth [19], which means that if we perform the singular value
decomposition (SVD):∫

Dinv

dρ′Gd

(
ρr, ρ

′) ◦ =
∑

`
U` (ρr) γ`

∫

Dinv

dρ′V ∗
`

(
ρ′

) ◦ (4)

where (·)∗ stands for the complex conjugate, {U`(ρr), ρr ∈ Dobs} and
{V`(ρ′),ρ′ ∈ Dinv} are the normalized orthogonal function series in
Dobs and Dinv respectively. Introducing P` =

∫
Dinv

dρ′V ∗
` (ρ′)w(ρ′), one

has
Escatt (ρr) =

∑
`
{σ`P`}U` (ρr) (5)

This equation implies that only the part of w(ρ′) corresponding to the
first few singular values can be contributed obviously to the scattered
field. It is called as radiating current while the rest of w(ρ′) is called
as the nonradiating current. After determining the radiating current
one can derive the full data of Escatt via Equation (1).

Analytical form of the SVD of the scattering operator can be
derived for special case [19]. However, for different measurement setups
and background, it is need to consider the SVD within the framework of
a discrete form. By meshing Dinv into N equal sub-squares, in each of
which the field, contrast and contrast source function are approximated
to be constant, and the discrete version of Equation (3) is∣∣∣[Etot](r)

∣∣∣ =
∣∣∣[Einc](r) + [Escatt](r)

∣∣∣ =
∣∣∣[Einc](r) + [[Gd] [w]](r)

∣∣∣ ,

r = 1, 2, . . . , R (6)

where [·] stands for the discrete form of a continues function and R is
the number of receiver. The singular value decomposition (SVD) of
[Gd] is given by

[Gd] = [U ] [Σ O] [V ]∗
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then

[Escatt] = [Gd] [w] = [U ] [Σ O] [V ]∗ [w] = [U ] [Σ O] [P ]

= [U ] [Σ O]
[

PR

PNR

]
= [U ] [Σ]

[
PR

]
(7)

where [P ] = [V ]H [w], and [PR], [PNR] imply the radiating and non-
radiating part, respectively, [Σ] = diag{γ1,γ1, . . . ,γR}, γ1 ≥ γ2 ≥
. . . ≥ γj > 0, and γj+1 = . . . = γR = 0, [O] is a zero matrix.

The series {γi, r = 1, 2, . . . , R} are the singular values of [Gd] and
decline rapidly to zero so that a truncation of them is usually made,
refer to Section 3. Now Equation (7) is changed to

[Escatt] ≈ [u1 | u2 | · · · | uTr]




σ1

. . .
σTr







PR
1

...
PR

Tr




=
[
UTr

] [
ΣTr

] [
P Tr

]
(8)

Then

[Etot] = [Einc] + [Escatt] ≈ [Einc] +
[
UTr

] [
ΣTr

] [
P Tr

]
(9)

where Tr is the truncation index, [UTr] is consisted with first Tr
columns of [U ], [P Tr] is consisted with first Tr rows of [P ], and
[ΣTr] = diag{γ1, . . . , γTr}.

2.2.1. Closed-form Solution to Phase Retrieve

If |[Escatt](r)| ¿ |[Einc](r)|, r = 1, . . . , R, which usually happens when
the objects of interest are weak scatterers, from (3) and (5) one has

∣∣∣[Etot](r)
∣∣∣
2
−

∣∣∣[Einc](r)
∣∣∣
2

= 2Re
(
[Einc]

∗
(r) [Escatt](r)

)
+

∣∣∣[Escatt](r)
∣∣∣
2

≈ 2Re
(
[Einc]

∗
(r) [Escatt](r)

)
= 2Re

(
[Einc]

∗
(r)

[[
UTr

] [
ΣTr

] [
P Tr

]]
(r)

)

There is a linear relationship between |[Etot]|2 − |[Einc]|2 and the
unknown [PTr]. Consequently, define

y = [yr] , yr =
∣∣∣[Etot](r)

∣∣∣
2
−

∣∣∣[Einc](r)
∣∣∣
2

H = [hrt] , hrt = γt [Einc]
∗
(r) ·

[
UTr

]
(r,t)

, r = 1, . . . , R, t = 1, . . . , T r

the P Tr can be given explicitly by[
Re

[
P Tr

]
Im

[
P Tr

]
]

= [Re [H] ,−Im [H]]† y (10)
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where [Re [H],−Im [H] ]† = ( [Re [H],−Im [H] ]T [ Re [H],−Im [H] ] )−1

[Re[H],−Im[H]]T . Once the radiating current P Tr has been derived
via Equation (10), the full data (amplitude plus phase) of scattering
field can be readily obtained via Equation (5).

2.2.2. Iterative Solution to Phase Retrieve

If |[Escatt](r)| ∼ |[Einc](r)|, r = 1, . . . , R, to obtain [P Tr] a iterative
approach has to be exploited to solve a nonlinear optimization problem,
in particular, [P Tr] can be reconstructed by searching the minimum
of the cost function given by the square norm of the square error of
measured and estimated intensity of the total field, which is defined as

Φ
([

P Tr
])

=
R∑

r=1

∣∣∣∣
∣∣∣
[[

UTr
] [

ΣTr
] [

P Tr
]]

(r)
+ [Einc](r)

∣∣∣
2
−

∣∣∣[Etot](r)
∣∣∣
2
∣∣∣∣
2

The cost function is derived for the single-transmitter case in which
the objects of interest are illustrated by electromagnetic wave from
only one direction. For the multi-transmitter case, denote by S be the
number of illustrating directions, [Einc], [Escatt], [Etot] become matrix
form, and the cost function can be written as

Φ
([

P Tr
])

=
R∑

r=1

S∑

s=1

∣∣∣∣
∣∣∣
[[

UTr
] [

ΣTr
] [

P Tr
]]

(r,s)
+ [Einc](r,s)

∣∣∣
2
−

∣∣∣[Etot](r,s)
∣∣∣
2
∣∣∣∣
2

(11)

The radiating current is given by searching the global minimum of the
cost function, while its local minimum can be avoided by increasing
the ratio of number of freedom of the measured data and that of the
unknowns [17]. The radiating current, when expressed in the domain of
[V ]∗, has only a very few non-zero elements, i.e., [P Tr], which ensures
a sufficient large ratio when the freedom of the measured data is fixed.
In the next subsection, minimizing the cost function (11) via the Polak-
Ribière conjugate gradient approach is briefly outlined.

2.2.3. Minimizing the Cost Function by Polak-Ribière Conjugate
Gradient Method

The Polak-Ribière conjugate gradient method is exploited to minimize
the cost function (11), where a key issue is to calculate the conjugate
gradient of the cost function given as:

∇Φ
([

P Tr
])∆=

∂Φ

∂ [P Tr]H

=2
[
ΣTr

] [
UTr

]H (
∆. ∗ (

[Einc]+
[
UTr

] [
ΣTr

] [
P Tr

]))
(12)
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where
∆ = [∆r,s] ,

∆r,s =
∣∣∣
[[

UTr
] [

ΣTr
] [

P Tr
]]

(r,s)
+ [Einc](r,s)

∣∣∣
2
−

∣∣∣[Etot](r,s)
∣∣∣
2 (13)

and the operator .∗ is defined as [A].∗[B] = [ar,s].∗[br,s] = [ar,sbr,s], the
matrix [A] and [B] are of the same size. Let [GTr] = −[∇Φ], and [DTr]
be the search direction. [GTr] and [DTr] are matrix of size R × Tr.
The minimizing procedure is summarized as:

Initializing:
n = 0, random choose

[
P Tr

](0)and set

[
DTr

](0)
=

[
GTr

](0)
= −∇Φ

([
P Tr

](0)
)

(14)

WHEN no satisfied condition is obtained, DO
STEP I: Computing

[
P Tr

](n+1) =
[
P Tr

](n) + α(n+1)
[
DTr

](n),
and

α(n) = argα minΦ
([

P Tr
](n)

+ α
[
V Tr

](n)
)

(15)

STEP II. Calculating[
DTr

](n+1) =
[
GTr

](n+1) + β(n+1)
[
DTr

](n)

with[
GTr

](n+1) = −∇Φ
([

P Tr
](n+1)

)

and

β(n+1) =

〈
[GTr](n+1)−[GTr](n)

,[GTr](n+1)
〉

〈
[GTr](n),[GTr](n)

〉

where 〈[·] , [◦]〉 :=
∑
r

∑
s

[·]∗(r,s) [◦](r,s)
STEP III. Checking if Φ

([
P Tr

])
is lower than a given threshold.

If not, goto STEP I;
else computing the radiating part of [w] is given by

[
wTr

]
= [V ]

[
P Tr

0

]
(16)

3. SIMULATION AND EXPERIMENT VALIDATION

In this section, several numerical simulations and experiment studies
have been carried out to test the performance of the proposed
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algorithm. The experiment data is provided as a free resource
for inverse scattering test by the Institute Fresnel in Marseille in
France [16]. The setup of the measurement is shown by the Fig. 1,
where the objects are located in a 0.15× 0.15m2 squares in free space,
and the transmitter illuminate from eight directions on a circle with
1.67m in radius, rounding this square. The incident angle θs changes
from 0◦ ∼ 360◦, by 45◦ per illumination. The receiver measures the
electric field on the same circle. The receiving angle θr changes from
60◦ ∼ 300◦, by 1◦ per sample. The working frequency for our all studies
is set to be 2 GHz.

Firstly, we carried out the numerical simulation for probed objects
shown in Fig. 2(a), where the transmitter is modeled by an electric
dipole. As mentioned above, the singular values of the Green’s matrix
[Gd] decrease rapidly as shown in Fig. 3, which means that the freedom
of radiating current is much low, and with very small number of
singular vector the radiating current can be represented with enough

(a) (b) (c) 

Figure 2. Test objects: The relative permittivity of the white cylinder
is 3.0, and that of the gray cylinder is 1.45.

Figure 3. The singular values of Green’s matrix.
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accuracy. To address this issue, introduce the truncation error and
reconstruction error of the scattered electric field density on measuring
circle is defined as:

err tr =
‖[Escatt]tr − [Escatt]ac‖2

‖[Escatt]ac‖2 (17)

err rec =
‖[Escatt]rec − [Escatt]ac‖2

‖[Escatt]ac‖2 (18)

where [Escatt]tr is the approximate scattered field density given by (8),
[Escatt]rec is the reconstructed one given by the proposed method and
[Escatt]ac is the actual one, the truncation and reconstruction errors
(noise free) for different choices of the truncation threshold Tr are
listed in Tab. 1. It shows that a larger Tr leads to more accurate
reconstruction. However, the convergence of the iteration process
will be slowed down respectively, and the accuracy of the further
reconstruction of object function will not be obviously improved. Here,
the smallest Tr such that γTr/γ1 < 1% is prefer. In noisy case,
the present method can still give a very good reconstruction of the
scattered field, which is shown in Fig. 4.

Table 1. Reconstruction error with different truncation threshold.

Tr err tr err rec

8 0.0608% 0.2011%
10 0.0014% 0.0230%
16 1.5098e-008% 2.2959e-006%
20 3.9306e-013% 7.5738e-008%

(a) (b)

Figure 4. Reconstruction results with zero mean Gaussian noise, (a)
phase of the scattered field, (b) amplitude of the scattered field.
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(a) (b) 

(c) (d)

(e)

Figure 5. The reconstruction for probed objects shown in Fig. 2(a):
(a) Phase of the scattered field (θs = 0◦), (b) amplitude of the scattered
field (θs = 0◦), (c) contrast map of the objects estimated by radiating
equivalent current, (d) contrast map of the objects estimated by all
equivalent current, (e) relative permittivity on the line y = 0.
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(a) (b)

(c) (d)

(e)

Figure 6. The reconstruction for probed objects shown in Fig. 2(b):
(a) phase of the scattered field (θs = 0◦), (b) amplitude of the scattered
field (θs = 0◦), (c) contrast map of the objects estimated by radiating
equivalent current, (d) contrast map of the objects estimated by all
equivalent current, (e) relative permittivity on the line y = 0.
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(a) (b)

(c) (d)

(e)

Figure 7. The reconstruction for the objects shown in Fig. 2(c): (a)
phase of the scattered field (θs = 0◦), (b) amplitude of the scattered
field (θs = 0◦), (c) contrast map of the objects estimated by radiating
equivalent current, (d) contrast map of the objects estimated by all
equivalent current, (e) relative permittivity on the line y = 0.
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Secondly, based on the experimental data from Frenel Lab three
test objects shown in Fig. 2 are used to test the proposed algorithm.
The experiment data given by [20] include both real and imaginary
part of the total and incident electric field density. We only utilize the
amplitude information of the total field for reconstruction. Though
the information of incident wave is not provided, it can be modeled
with enough accuracy if the parameters of used antenna are known.
For this case, the transmitters/receivers are modeled by an electric
dipole. Afterwards, the scattered or total field is reconstructed
by the proposed algorithm. The results are shown in Figs. 5 ∼
7(a), 7(b), respectively for different test objects, As the by-product,
the reconstructed radiating part of the equivalent current density
to perform a coarse estimation of the dielectric properties of test
objects also are shown in Figs. 5 ∼ 7(c). The estimations give good
approximated contrast map of the test objects. Moreover, we also use
the estimation as initial guess for inverse scattering reconstruction [18],
shown in Figs. 5 ∼ 7(d), 7(e), respectively.

4. CONCLUSION

In this paper, we have proposed a highly efficient algorithm to retrieve
the phase information from the intensity-only measurement for the
electromagnetic inverse scattering imaging, which can be used for the
imaging application where phase measurement is difficult or highly
expensive such as optics and THz imaging. The key point of the
algorithm is to estimate the radiating part of the equivalent current
from the amplitude-only data. Importantly, a closed-form formulation
of phase retrieve, i.e., Equations (10) and (5), also has been derived
when the intensity of incident wave is much stronger than one of
the scattered wave, for example, for the weak scattering objects. In
addition, the reconstructed equivalent radiating current is a byproduct
of our algorithm. Furthermore, it can be used to give a coarse contrast
map of test objects, which is helpful in fast imaging. Indeed, it also
gives a good initial guess in further inverse scattering reconstruction.
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APPENDIX A.

In this appendix, how to solve Equation (15) is summarized. Firstly,
Equation (15) can be rewritten as

Φ
([

P Tr
](n)

+ α
[
DTr

](n)
)

=
R∑

r=1

S∑

s=1

∣∣∣α2 [A](r,s)+α [B](r,s)+[C](r,s)
∣∣∣
2

= aα4+bα3+cα2+dα + e

where
a =

∑
r

∑
s

∣∣A(r,s)

∣∣2

b = 2Re
∑

r

∑
s

[A]∗(r,s) [B](r,s)

c =
∑

r

∑
s

∣∣B(r,s)

∣∣2 + 2Re 〈A,C〉

d = 2Re 〈B, C〉
e =

∑
r

∑
s

∣∣C(r,s)

∣∣2.

A(r,s) =
∣∣∣∣
[[

UTr
] [

ΣTr
] [

DTr
](n)

]
(r,s)

∣∣∣∣
2

(A1)

B(r,s) = 2Re




(
[Einc](i,j) +

[[
UTr

] [
ΣTr

] [
P Tr

](n)
]
(r,s)

)

×
[[

UTr
] [

ΣTr
] [

DTr
](n)

]∗
(r,s)


 (A2)

C(r,s) =

∣∣∣∣∣

[[
UTr

] [
ΣTr

] [
P Tr

](n)
]
(r,s)

+ [Einc](r,s)

∣∣∣∣∣

2

−
∣∣∣[Etot](r,s)

∣∣∣
2

= ∆(n)
r,s (A3)

Correspondingly, the updating step size α(n+1) is the minimum real
positive root of the equation by

∂
(
Φ

([
P Tr

](n) + α
[
V Tr

](n)
))

∂α
= 4aα3 + 3bα2 + 2cα + d = 0 (A4)
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