Vol. 103
Latest Volume
All Volumes
PIER 180 [2024] PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2010-04-13
Field and Source Equivalence in Source Reconstruction on 3D Surfaces
By
Progress In Electromagnetics Research, Vol. 103, 67-100, 2010
Abstract
This paper describes in detail different formulations of the inverse-source problem, whereby equivalent sources and/or fields are to be computed on an arbitrary 3-D closed surface from the knowledge of complex vector electric field data at a specified (exterior) surface. The starting point is the analysis of the formulation in terms of the Equivalence Principle, of the possible choices for the internal fields, and of their practical impact. Love's (zero interior field) equivalence is the only equivalence form that yields currents directly related to the fields on the reconstruction surface; its enforcement results in a pair of coupled integral equations. Formulations resulting in a single integral equation are also analyzed. The first is the single-equation, two-current formulation which is most common in current literature, in which no interior field condition is enforced. The single-current (electric or magnetic) formulation deriving from continuity enforcement of one field is also introduced and analyzed. Single-equation formulations result in a simpler implementation and a lower computational load than the dual-equation formulation, but numerical tests with synthetic data support the benefits of the latter. The spectrum of the involved (discretized) operators clearly shows a relation with the theoretical Degrees of Freedom (DoF) of the measured field for the dual-equation formulation that guarantees extraction of these DoF; this is absent in the single-equation formulation. Examples confirm that single-equation formulations do not yield Love's currents, as observed both with comparison with reference data and via energetic considerations. The presentation is concluded with a test on measured data which shows the stability and usefulness of the dual-equation formulation in a situation of practical relevance.
Citation
Javier Leonardo Araque Quijano, and Giuseppe Vecchi, "Field and Source Equivalence in Source Reconstruction on 3D Surfaces," Progress In Electromagnetics Research, Vol. 103, 67-100, 2010.
doi:10.2528/PIER10030309
References

1. Alvarez, Y., F. Las-Heras, and M. R. Pino, "Reconstruction of equivalent currents distribution over arbitrary three-dimensional surfaces based on integral equation algorithms," IEEE Transactions on Antennas and Propagation, Vol. 55, No. 12, 3460-3468, Dec. 2007.
doi:10.1109/TAP.2007.910316

2. Alvarez, Y., F. Las-Heras, M. R. Pino, and J. A. Lopez, "Acceleration of the sources reconstruction method via the fast multipole method," IEEE Antennas and Propagation Society International Symposium, 2008. AP-S 2008 , 1-4, Jul. 2008.

3. Alvarez, Y., T. Sarkar, and F. Las-Heras, "Improvement of the sources reconstruction techniques: Analysis of the svd algorithm and the rwg basis functions," IEEE Antennas and Propagation Society International Symposium, 5644-5647, Jun. 2007.

4. Araque, J. and G. Vecchi, "Removal of unwanted structural interactions from antenna measurements," IEEE Antennas and Propagation Society International Symposium, 2009. APSURSI'09, 1-4, Jun. 2009.
doi:10.1109/APS.2009.5171590

5. Araque, J. L. A. and G. Vecchi, "Improved-accuracy source reconstruction on arbitrary 3-D surfaces," IEEE Antennas and Wireless Propagation Letters, Vol. 8, 1046-1049, 2009.
doi:10.1109/LAWP.2009.2031988

6. Balanis, C. A., Antenna Theory: Analysis and Design, 3 Ed., Wiley-Interscience, Apr. 2005.

7. Bertero, M. and P. Boccacci, Introduction to Inverse Problems in Imaging, Institute of Physics Publising, 1998.

8. Blanch, S., R. G. Yaccarino, J. Romeu, and Y. Rahmat-Samii, "Near-field to far-field transformation of bi-polar measurements by equivalent magnetic current approach," IEEE Antennas and Propagation Society International Symposium, 561-564, Baltimore MD, Jun. 1996.

9. Bucci, O. M., L. Crocco, and T. Isernia, "Improving the reconstruction capabilities in inverse scattering problems by exploitation of close-proximity setups ," J. Opt. Soc. Am. A, Vol. 16, No. 7, 1788-1798, 1999.
doi:10.1364/JOSAA.16.001788

10. Bucci, O. M. and G. Franceschetti, "On the spatial bandwidth of scattered fields," IEEE Transactions on Antennas and Propagation, Vol. 35, No. 12, 1445-1455, Dec. 1987.
doi:10.1109/TAP.1987.1144024

11. Bucci, O. M. and G. Franceschetti, "On the degrees of freedom of scattered fields," IEEE Transactions on Antennas and Propagation, Vol. 37, No. 7, 918-926, Jul. 1989.
doi:10.1109/8.29386

12. Bucci, O. M., C. Gennarelli, and C. Savarese, "Representation of electromagnetic fields over arbitrary surfaces by a finite and nonredundant number of samples," IEEE Transactions on Antennas and Propagation, Vol. 46, No. 3, 351-359, Mar. 1998.
doi:10.1109/8.662654

13. Chew, W. C., Y. M. Wang, G. Otto, D. Lesselier, and J. C. Bolomey, "On the inverse source method of solving inverse scattering problems ," Inverse Problems, Vol. 10, No. 3, 547-553, 1994.
doi:10.1088/0266-5611/10/3/004

14. Eibert, T. F. and C. H. Schmidt, "Multilevel fast multipole accelerated inverse equivalent current method employing Rao-Wilton-Glisson discretization of electric and magnetic surface currents," IEEE Transactions on Antennas and Propagation, Vol. 57, No. 4, 1178-1185, Apr. 2009.
doi:10.1109/TAP.2009.2015828

15. Ergul, O. and L. Gurel, "Stabilization of integral-equation formulations for the accurate solution of scattering problems involving low-contrast dielectric objects," IEEE Transactions on Antennas and Propagation, Vol. 56, No. 3, 799-805, Mar. 2008.
doi:10.1109/TAP.2008.916971

16. Vipiana, F., A. Polemi, S. Maci, and G. Vecchi, "A mesh-adapted closed-form regular kernel for 3D singular integral equations," IEEE Transactions on Antennas and Propagation, Vol. 56, No. 6, 1687-1698, Jun. 2008.
doi:10.1109/TAP.2008.923334

17. Glisson, A., "An integral equation for electromagnetic scattering from homogeneous dielectric bodies ," IEEE Transactions on Antennas and Propagation, Vol. 32, No. 2, 173-175, Feb. 1984.
doi:10.1109/TAP.1984.1143279

18. Golub, G. H. and C. F. van Loan, Matrix Computations (Johns Hopkins Studies in Mathematical Sciences), 3rd Ed., The Johns Hopkins University Press, Oct. 1996.

19. Hansen, J. E., Spherical Near-field Antenna Measurements, Vol. 26, IEE Electromagnetic Waves Series, Stevenage Herts England Peter Peregrinus Ltd., 1988 .

20. Harrington, R. F., "Time Harmonic Electromagnetic Fields," IEEE Press, 2001.

21. Hsiao, G. C. and R. E. Kleinman, "Mathematical foundations for error estimation in numerical solutions of integral equations in electromagnetics," IEEE Transactions on Antennas and Propagation, Vol. 45, No. 3, 316-328, Mar. 1997.
doi:10.1109/8.558648

22. Las-Heras, F., Y. Alvarez, M. R. Pino, and M. Alvarez, "Sources reconstruction techniques for the diagnosis and characterization of antennas of complex geometry ," Proceedings of ICONIC, 182-187, Jun. 2007.

23. Las-Heras, F., M. R. Pino, S. Loredo, Y. Alvarez, and T. K. Sarkar, "Evaluating near-field radiation patterns of commercial antennas," IEEE Transactions on Antennas and Propagation, Vol. 54, No. 8, 2198-2207, Aug. 2006.
doi:10.1109/TAP.2006.879190

24. Laurin, J. J., J. F. Zurcher, and F. Gardiol, "Near-field diagnostics of small printed antennas using the equivalent magnetic current approach ," IEEE Transactions on Antennas and Propagation, Vol. 49, No. 5, 814-828, May 2001.
doi:10.1109/8.929636

25. Leibfritz, M. M., F. M. Landstorfer, and T. F. Eibert, "An equivalent source method to determine complex excitation levels of antenna arrays from near-field measurements," The Second European Conference on Antennas and Propagation, 2007. EuCAP 2007, 1-7, Nov. 2007.

26. Alvarez Lopez, Y., C. Cappellin, F. Las-Heras, and O. Breinbjerg, "On the comparison of the spherical wave expansion-to-plane wave expansion and the sources reconstruction method for antenna diangostics ," Progress In Electromagnetics Research, Vol. 87, 245-262, 2008.
doi:10.2528/PIER08092202

27. Lopez, Y. A., F. Las-Heras Andres, M. R. Pino, and T. K. Sarkar, "An improved super-resolution source reconstruction method," IEEE Transactions on Instrumentation and Measurement, Vol. 58, No. 11, 3855-3866, Nov. 2009.
doi:10.1109/TIM.2009.2020847

28. Marengo, E. A. and R. W. Ziolkowski, "Nonradiating and minimum energy sources and their fields: Generalized source inversion theory and applications," IEEE Transactions on Antennas and Propagation, Vol. 48, No. 10, 1553-1562, Oct. 2000.
doi:10.1109/8.899672

29. Marengo, E. A. and A. J. Devaney, "The inverse source problem of electromagnetics: Linear inversion formulation and minimum energy solution," IEEE Transactions on Antennas and Propagation, Vol. 47, No. 2, 410-412, Feb. 1999.
doi:10.1109/8.761085

30. Marengo, E. A., A. J. Devaney, and F. K. Gruber, "Inverse source problem with reactive power constraint," IEEE Transactions on Antennas and Propagation, Vol. 52, No. 6, 1586-1595, Jun. 2004.
doi:10.1109/TAP.2004.829408

31. Martini, E., G. Carli, and S. Maci, "An equivalence theorem based on the use of electric currents radiating in free space," IEEE Antennas and Wireless Propagation Letters, Vol. 7, 421-424, 2008.
doi:10.1109/LAWP.2008.2001764

32. Marx, E., "Integral equation for scattering by a dielectric," IEEE Transactions on Antennas and Propagation, Vol. 32, No. 2, 166-172, Feb. 1984.
doi:10.1109/TAP.1984.1143285

33. Mohajer, M., S. Safavi-Naeini, and S. K. Chaudhuri, "Surface current source reconstruction for given radiated electromagnetic fields ," IEEE Transactions on Antennas and Propagation, Vol. 58, No. 2, 432-439, Feb. 2010.
doi:10.1109/TAP.2009.2037696

34. Nadeau, B. and J. J. Laurin, "Extrapolations using vectorial planar near-field measurements for EMC," IEEE Int. Symp. Electromag. Compat., Denver CO, 924-928, Aug. 1998.

35. Persson, K. and M. Gustaffson, "Reconstruction of equivalent currents using a near-field data transformation --- With radome applications," Progress In Electromagnetics Research, Vol. 54, 179-198, 2005.
doi:10.2528/PIER04111602

36. Petre, P. and T. K. Sarkar, "Planar near-field to far-field transformation using an equivalent magnetic current approach," IEEE Transactions on Antennas and Propagation, Vol. 40, No. 11, 1348-1356, Nov. 1992.
doi:10.1109/8.202712

37. Petre, P. and T. K. Sarkar, "Theoretical comparison of modal expansion and integral equation methods for near-field to far-field transformation," Asia-Pacific Microwave Conference, 1992. APMC'92, Vol. 2, 713-716, Aug. 1992.

38. Sarkar, T. K. and A. Taaghol, "Near-field to near/far-field trans-formation for arbitrary near-field geometry, utilizing an equivalent magnetic current," IEEE Transactions on Electromagnetic Compatibility, Vol. 38, No. 3, 536-542, Aug. 1996.
doi:10.1109/15.536088

39. Sarkar, T. K. and A. Taaghol, "Near-field to near/far-field transformation for arbitrary near-field geometry utilizing an equivalent electric current and mom," IEEE Transactions on IEEE Transactions on, Vol. 47, No. 3, 566-573, Mar. 1999.

40. Stratton, J. A. and L. J. Chu, "Diffraction theory of electromagnetic waves," Phys. Rev., Vol. 56, No. 1, 99-107, Jul. 1939.
doi:10.1103/PhysRev.56.99

41. Van Den Berg, P. M., E. Korkmaz, and A. Abubakar, "A constrained conjugate gradient method for solving the magnetic ¯eld boundary integral equation," IEEE Transactions on Antennas and Propagation, Vol. 51, No. 6, 1168-1176, Jun. 2003.
doi:10.1109/TAP.2003.812275

42. Woodworth, M. B. and A. D. Yaghjian, "Derivation, application, and conjugate gradient solution of dual-surface integral equations or three-dimensional, multi-wavelength perfect conductors ," Progress In Electromagnetics Research, Vol. 5, 103-129, 1991.

43. Yla-Oijala, P. and M. Taskinen, "Well-conditioned muller formulation for electromagnetic scattering by dielectric objects," IEEE Transactions on Antennas and Propagation, Vol. 53, No. 10, 3316-3323, Oct. 2005.
doi:10.1109/TAP.2005.856313