Vol. 102
Latest Volume
All Volumes
PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2010-03-04
Planar Transmission Line Method for Characterization of Printed Circuit Board Dielectrics
By
Progress In Electromagnetics Research, Vol. 102, 267-286, 2010
Abstract
An effective approach to characterize frequency-dispersive sheet materials over a wide RF and microwave frequency range based on planar transmission line geometries and a genetic algorithm is proposed. S-parameters of a planar transmission line structure with a sheet material under test as a substrate of this line are measured using a vector network analyzer (VNA). The measured S-parameters are then converted to ABCD matrix parameters. With the assumption of TEM/quasi-TEM wave propagation on the measured line, as well as reciprocity and symmetry of the network, the complex propagation constant can be found, and the corresponding phase constant and attenuation constant can be retrieved. Attenuation constant includes both dielectric loss and conductor loss terms. At the same time, phase term, dielectric loss and conductor loss can be calculated for a known transmission line geometry using corresponding closed-form analytical or empirical formulas. These formulas are used to construct the objective functions for approximating phase constants, conductor loss and dielectric loss in an optimization procedure based on a genetic algorithm (GA). The frequency-dependent dielectric properties of the substrate material under test are represented as one or a few terms following the Debye dispersion law. The parameters of the Debye dispersion law are extracted using the GA by minimizing the discrepancies between the measured and the corresponding approximated loss and phase terms. The extracted data is verified by substituting these data in full-wave numerical modeling of structures containing these materials and comparing the simulated results with experimental.
Citation
Jianmin Zhang, Marina Koledintseva, Giulio Antonini, James Drewniak, Antonio Orlandi, and Konstantin Rozanov, "Planar Transmission Line Method for Characterization of Printed Circuit Board Dielectrics," Progress In Electromagnetics Research, Vol. 102, 267-286, 2010.
doi:10.2528/PIER10012807
References

1. Nikellis, K., N. K. Uzunoglu, Y. Koutsoyannopoulos, and S. Bantas, "Full-wave modeling of stripline structures in multilayer dielectrics," Progress In Electromagnetics Research, Vol. 57, 253-264, 2006.
doi:10.2528/PIER05071302

2. Wu, B. and L. Tsang, "Full-wave modeling of multiple vias using differential signaling and shared antipad in multilayered high speed vertical interconnects," Progress In Electromagnetics Research, Vol. 97, 129-139, 2009.
doi:10.2528/PIER09091707

3. Bernardi, P., R. Cicchetti, G. Pelosi, A. Reatti, S. Selleri, and M. Tatini, "An equivalent circuit for EMI prediction in printed circuit boards featuring a straight-to-bent microstrip line coupling," Progress In Electromagnetics Research B, Vol. 5, 107-118, 2008.
doi:10.2528/PIERB08020502

4. Saito, S. and K. Kurokawa, "A precision resonance method for measuring dielectric properties of low-loss solid materials in the microwave region," Proceedings of the IRE, Vol. 44, No. 1, 35-42, 1956.
doi:10.1109/JRPROC.1956.274848

5. Du, S., "A new method for measuring dielectric constant using the resonant frequency of a patch antenna," IEEE Trans. Microw. Theory Tech., Vol. 34, No. 9, 923-931, Sep. 1986.
doi:10.1109/TMTT.1986.1133472

6. Abdulnour, J., C. Akyel, and K. Wu, "A generic approach for permittivity measurement of dielectric materials using a discontinuity in a rectangular waveguide or a microstrip line," IEEE Trans. Microw. Theory Tech., Vol. 43, No. 5, 1060-1066, 1995.
doi:10.1109/22.382066

7. Holzman, E. L., "Wideband measurement of the dielectric constant of an FR4 substrate using a parallel-coupled microstrip resonator," IEEE Trans. Microw. Theory Tech., Vol. 54, No. 7, 3127-3130, 2006.
doi:10.1109/22.493931

8. Huang, J., K. Wu, and C. Akyel, "Characterization of highly dispersive materials using composite coaxial cells, electromagnetic analysis and wideband measurement," IEEE Trans. Microw. Theory Tech., Vol. 44, No. 5, 770-777, 1996.

9. Baker-Jarvis, J., M. D. Janezic, B. F. Riddle, R. T. Johnk, P. Kabos, C. L. Holloway, R. G. Geyer, and C. A. Grosvenor, "Measuring the permittivity and permeability of lossy materials: Solid, metals, building materials, and negative-index materia,", NIST Technical Note 1536, Boulder, CO, USA, Dec. 2004.
doi:10.1109/PROC.1986.13432

10. Afsar, M. N., J. B. Birch, and R. N. Clarke, "The measurement of the properties of materials," Proc. IEEE, Vol. 74, No. 1, 183-199, 1986.

11. Klein, K. and J. C. Santamarina, "Methods for broad-band dielectric permittivity measurements (Soil-Water Mixtures, 5 Hz to 1.3 GHz)," Geotechnical Testing Journal, Vol. 20, No. 2, Jun. 1997.
doi:10.1109/TADVP.2004.841679

12. Deutsch, A., T. Winkel, G. V. Kopcsay, C. W. Surovic, B. J. Rubin, G. A. Katopis, B. J. Chamberlin, and R. S. Krabbenhoft, "Extraction of εr(f) and tan δ(f) for printed circuit board insulatiors up to 30 GHz using the short-pulse propagation technique," IEEE Trans. Adv. Packag., Vol. 28, No. 1, 4-12, Feb. 2005.
doi:10.1109/TEMC.2008.927923

13. Zhang, J., M. Y. Koledintseva, J. L. Drewniak, D. J. Pommerenke, R. E. DuBroff, Z. Yang, W. Chen, K. N. Rozanov, G. Antonini, and A. Orlandi, "Reconstruction of dispersive dielectric properties for PCB substrates using a genetic algorithm," IEEE Trans. Electromagn. Compat., Vol. 50, No. 3, 704-714, Aug. 2008.

14. Zhang, J., M. Y. Koledintseva, D. P. Pommerenke, J. L. Drewniak, K. N. Rozanov, G. Antonini, and A. Orlandi, "Extraction of dispersive material parameters using vector network analysers and genetic algorithms," Proc. IEEE Instrumentation and Measurement Technology Conference, 462-467, Sorrento, Italy, Apr. 2006.
doi:10.1103/PhysRevE.65.061510

15. Hilfer, R., "H-function representation for stretched exponential relaxation and non-Debye susceptibilities in glassy systems," Phys. Rev. E, Vol. 65, 061510, 2002.

16. Jonscher, A. K., Dielectric Relaxation in Solids, Chelsea Dielectric Press, 1983.
doi:10.1109/15.974647

17. Djordjevic, A. R., R. M. Biljic, V. D. Likar-Smiljanic, and T. K. Sarkar, "Wideband frequency-domain characterization of FR-4 and time-domain causality," IEEE Trans. on Electromag. Compat., Vol. 43, No. 4, 662-667, Nov. 2001.

18. Koledintseva, M. Y., J. Wu, J. Zhang, J. L. Drewniak, and K. N. Rozanov, "Representation of permittivity for multi-phase dielectric mixtures in FDTD modeling," Proc. IEEE Symp. Electromag. Compat., Vol. 1, 309-314, 2004.

19. Koledintseva, M. Y., K. N. Rozanov, A. Orlandi, and J. L. Drewniak, "Extraction of the Lorentzian and Debye parameters of dielectric and magnetic dispersive materials for FDTD modeling," J. Electr. Eng., IEE Slovak, Vol. 53, No. 9, 97-100, 2002.

20. Landau, L. D. and E. M. Lifshitz, Electrodynamics of Continuous Media, 256-265, Pergamon Press, 1960.

21. Rahmat-Samii, Y. and E. Michielssen, Electromagnetic Optimization by Genetic Algorithms, 1-93, Wiley, 1999.
doi:10.1002/9780470106280.ch1

22. Haupt, R. L. and D. H. Werner, Genetic Algorithms in Electromagnetics, IEEE Press, Wiley, 2007.
doi:10.2528/PIER09091705

23. Mittal, G. and D. Singh, "Critical analysis of microwave specular scattering response on roughness parameter and moisture content for bare periodic rough surfaces and its retrieval," Progress In Electromagnetics Research, Vol. 100, 129-152, 2010.
doi:10.2528/PIERB08070904

24. Liu, B., L. Beghou, L. Pichon, and F. Costa, "Adaptive genetic algorithm based source identification with near-field scanning method," Progress In Electromagnetics Research B, Vol. 9, 215-230, 2008.
doi:10.2528/PIERB08080202

25. Chen, H. T., G.-Q. Zhu, and S.-Y. He, "Using genetic algorithm to reduce the radar cross section of three-dimensional anisotropic impedance object," Progress In Electromagnetics Research B, Vol. 9, 231-248, 2008.
doi:10.2528/PIER08061806

26. Agastra, E., G. Bellaveglia, L. Lucci, R. Nesti, G. Pelosi, G. Ruggerini, and S. Selleri, "Genetic algorithm optimization of high-efficiency wide-band multimodal square horns for discrete lenses," Progress In Electromagnetics Research, Vol. 83, 335-352, 2008.
doi:10.2528/PIER07091901

27. Xu, Z., H. Li, Q.-Z. Liu, and J.-Y. Li, "Pattern synthesis of conformal antenna array by the hybrid genetic algorithm," Progress In Electromagnetics Research, Vol. 79, 75-90, 2008.
doi:10.2528/PIER07031506

28. Meng, Z., "Autonomous genetic algorithm for functional optimization," Progress In Electromagnetics Research, Vol. 72, 253-268, 2007.
doi:10.1029/2007JE002941

29. Zhang, Z., T. Hagfors, E. Nielsen, G. Picardi, A. Mesdea, and J. J. Plaut, "Dielectric properties of the Martian south polar layered deposits: MARSIS data inversion using Bayesian inference and genetic algorithm," J. Geophys. Res., Vol. 113, E05004, May 2008.

30. Diaz-Morcillo, A., J. Monzo-Cabrera, M. E. Requena-Perez, and A. Lozano-Guerrero, "Application of genetic algorithms in the determination of dielectric properties of materials at microwave frequencies," Lecture Notes in Computer Science (LNCS), Vol. 4528, 608-617, Nature Inspired Problem-Solving Methods in Knowledge Engineering, Springer, Berlin, 2007.

31. Oswald, B., D. Erni, H. R. Benedickter, W. Bachtold, and H. Fluhler, "Dielectric properties of natural materials," IEEE Int. Symp. Antennas and Propagation Society (APS), Vol. 4, 2002-2005, Jun. 21-26, 1998.
doi:10.1109/TEMC.2005.847406

32. Koledintseva, M. Y., J. L. Drewniak, D. J. Pommerenke, K. N. Rozanov, G. Antonini, and A. Orlandi, "Wide-band Lorentzian media in the FDTD algorithm," IEEE Trans. on Electromag. Compat., Vol. 47, No. 2, 392-398, May 2005.

33. Koul, A., P. K. R. Anmula, M. Y. Koledintseva, J. L. Drewniak, and S. Hinaga, "Improved technique for extracting parameters of low-loss dielectrics on printed circuit boards," Proc. IEEE Symp. Electromag. Compat., 191-196, Austin, TX, Aug. 17-21, 2009.

34. Braunisch, H., X. Gu, A. Camacho-Bragado, and L. Tsang, "Off-chip rough-metal-surface propagation loss modeling and correlation with measurements," IEEE Electronic Components and Technology Conference, 785-791, 2007.

35. Koledintseva, M. Y., A. Koul, P. K. R. Anmula, J. L. Drewniak, S. Hinaga, E. Montgomery, and K. N. Rozanov, "Separating dielectric and conductor loss for rough striplines in printed circuit boards," Progress In Electromagnetics Research Symposium Abstracts, 213, Moscow, Russia, Aug. 18-21, 2009.
doi:10.1109/75.755052

36. Janezic, M. D. and J. A. Jargon, "Complex permittivity determination from propagation constant measurements," IEEE Microwave and Guided Wave Letters, Vol. 9, No. 2, 76-78, Feb. 1999.
doi:10.1109/22.57336

37. Baker-Jarvis, J., E. Vanzura, and W. Kissick, "Improved technique for determining complex permittivity with the transmsion/reflection method," IEEE Trans. Microw. Theory Techn., Vol. 38, 1096-1103, Aug. 1990.

38. Hoffman, R. K., Handbook of Microwave Integrated Circuits, Artech House, 1987.

39. Pozar, M., Microwave Engineering, 2nd Ed., Wiley, 1998.

40. Schneider, M. V., "Microstrip lines for microwave integrated circuits," The Bell System Technical Journal, Vol. 48, No. 5-6, 1421-1444, 1969.

41. Gardiol, F. and K. Chang, Microstrip Circuits, 33-58, Wiley, 1994.
doi:10.1109/TMTT.1977.1129179

42. Wheeler, H. A., "Transmission line properties of a strip on a dielectric sheet on a plane," IEEE Trans. Microw. Theory Tech., Vol. 25, No. 8, 631-647, 1977.

43. Wadell, B. C., Transmission Line Design Handbook, 129-131, Artech House, 1991.

44. Hockanson, D. M., J. L. Drewniak, T. H. Hubing, and T. P. van Doren, "FDTD modeling of thin wires simulating common-mode radiation from structures with attached cables," Proc. IEEE Symp. Electromag. Compat., 168-173, 1Atlanta, GA, USA, Aug. 1995.

45. Wang, C., J. L. Drewniak, and M. Li, "FDTD modeling of skin effect," Proc. IEEE Symp. Electromag. Compat., 246-249, Beijing, China, May 2002.

46. Mongia, R., I. Bahl, and P. Bhartia, RF and Microwave Coupled-Line Circuits, 83-90, Artech House, 1999.

47. Zhang, J., J. L. Drewniak, D. P. Pommerenke, R. E. DuBroff, Z. Yang, W. Cheng, J. Fisher, and S. Camerlo, "Signal link-path characterization up to 20 GHz based on a stripline structure," Proc. of the 2006 IEEE International Symposium on Electromagnetic Compatibility, Vol. 2, 356-361, Portland, OR, Aug. 2006.

48. Clemens, M., S. Drobny, and T. Weiland, "Time integration of slowly-varying electromagnetic field problems using the finite integration technique," Scientific Computing in Electrical Engineering, U. van Reinen, M. Guenther, and Hecht (eds.), 63-70, Springer Verlag, 2001.