Vol. 11
Latest Volume
All Volumes
PIERM 130 [2024] PIERM 129 [2024] PIERM 128 [2024] PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2010-03-15
Optimized Simulation Algorithms for Fractal Generation and Analysis
By
Progress In Electromagnetics Research M, Vol. 11, 225-240, 2010
Abstract
A set of algorithms, specifically developed to facilitate an effective modeling of fractal-boundary microstrip antennas in the analysis of such structures through numerical electromagnetic (EM) solvers is presented in this paper. A fractal generator based on the implementation of an Iterated Function System (IFS) produces the geometry specified in accordance with the user-defined input parameters. The structure is created through a solver-specific interface and is thus applicable to a commercially available EM simulation suite. The generation of specific shapes through these algorithms provides a flexible method to study different geometries without the need to modify either the interface or the solver. Three structures based on the Minkowski fractal obtained through these techniques have been studied using two EM solvers for comparison. The frequency-domain results show good agreement between the two solvers, thus validating the algorithms implemented. Complex structures with higher iterations can be studied using these algorithms.
Citation
Bruno Camps-Raga, and Naz E. Islam, "Optimized Simulation Algorithms for Fractal Generation and Analysis," Progress In Electromagnetics Research M, Vol. 11, 225-240, 2010.
doi:10.2528/PIERM10012610
References

1. Yee, K., "Numerical solution of inital boundary value problems involving maxwell's equations in isotropic media," IEEE Transactions on Antennas and Propagation, Vol. 14, No. 3, 302-307, 1966.
doi:10.1109/TAP.1966.1138693

2. Cohen, N., "Fractal antenna applications in wireless telecommunications," Electronics Industries Forum of New England, Professional Program Proceedings, 43-49, May 1997.
doi:10.1109/EIF.1997.605374

3. Mandelbrot, B. B., The Fractal Geometry of Nature, W. H. Freeman, Aug. 1982.

4. Werner, D. H. and R. Mittra, Frontiers in Electromagnetics, Wiley-IEEE Press, 1999.
doi:10.1109/9780470544686

5. Vinoy, K., J. Abraham, and V. Varadan, "On the relationship between fractal dimension and the performance of multi-resonant dipole antennas using Koch curves," IEEE Transactions on Antennas and Propagation, Vol. 51, 2296-2303, Sep. 2003.
doi:10.1109/TAP.2003.816352

6. Gianvittorio, J. and Y. Rahmat-Samii, "Fractal antennas: A novel antenna miniaturization technique, and applications," IEEE Antennas and Propagation Magazine, Vol. 44, 20-36, Feb. 2002.
doi:10.1109/74.997888

7. Barnsley, M., Fractals Everywhere, Academic Press, 1988.

8. Peitgen, H. O., H. Jurgens, and D. Saupe, Chaos and Fractals: New Frontiers of Science, Springer, Feb. 1993.

9. Werner, D. and S. Ganguly, "An overview of fractal antenna engineering research," IEEE Antennas and Propagation Magazine, Vol. 45, 38-57, Feb. 2003.
doi:10.1109/MAP.2003.1189650

10. Sarkar, T. K., S. M. Rao, and A. Djordjevic, "Electromagnetic scattering and radiation from finite microstrip structures," IEEE Transactions on Microwave Theory and Techniques, Vol. 38, 1568-1575, Nov. 1990.

11. Luebbers, R. and H. Langdon, "A simple feed model that reduces time steps needed for FDTD antenna and microstrip calculations," IEEE Transactions on Antennas and Propagation, Vol. 44, 1000-1005, Jul. 1996.

12. Luebbers, R., L. Chen, T. Uno, and S. Adachi, "FDTD calculation of radiation patterns, impedance, and gain for a monopole antenna on a conducting box," IEEE Transactions on Antennas and Propagation, Vol. 40, 1577-1583, Dec. 1992.
doi:10.1109/8.204752

13. Berenger, J. P., "A perfectly matched layer for the absorption of electromagnetic waves," Journal of Computational Physics, Vol. 114, No. 2, 185-200, 1994.
doi:10.1006/jcph.1994.1159

14. Berenger, J. P., "Three-dimensional perfectly matched layer for the absorption of electromagnetic waves," Journal of Computational Physics, Vol. 127, 363-379, 1996.
doi:10.1006/jcph.1996.0181

15. Berenger, J. P., "Making use of the PML absorbing boundary condition in coupling and scattering FDTD computer codes," IEEE Transactions on Electromagnetic Compatibility, Vol. 45, 189-197, May 2003.
doi:10.1109/TEMC.2003.810803

16. Kunz, K. and L. Simpson, "A technique for increasing the resolution of finite-difference solutions of the maxwell equation," IEEE Transactions on Electromagnetic Compatibility, Vol. 23, 419-422, Nov. 1981.

17. Jurgens, T. and A. Taflove, "Three-dimensional contour FDTD modeling of scattering from single and multiple bodies," IEEE Transactions on Antennas and Propagation, Vol. 41, 1703-1708, Dec. 1993.
doi:10.1109/8.273315

18. Dey, S. and R. Mittra, "A locally conformal finite-difference timedomain (FDTD) algorithm for modeling three-dimensional perfectly conducting objects," IEEE Microwave and Guided Wave Letters, Vol. 7, 273-275, Sep. 1997.
doi:10.1109/75.622536

19. Yu, W. H. and R. Mittra, "A conformal FDTD algorithm for modeling perfectly conducting objects with curve-shaped surfaces and edges," Microwave and Optical Technology Letters, Vol. 27, No. 2, 136-138, 2000.
doi:10.1002/1098-2760(20001020)27:2<136::AID-MOP16>3.0.CO;2-Q