1. Yee, K., "Numerical solution of inital boundary value problems involving maxwell's equations in isotropic media," IEEE Transactions on Antennas and Propagation, Vol. 14, No. 3, 302-307, 1966.
doi:10.1109/TAP.1966.1138693
2. Cohen, N., "Fractal antenna applications in wireless telecommunications," Electronics Industries Forum of New England, Professional Program Proceedings, 43-49, May 1997.
doi:10.1109/EIF.1997.605374
3. Mandelbrot, B. B., The Fractal Geometry of Nature, W. H. Freeman, Aug. 1982.
4. Werner, D. H. and R. Mittra, Frontiers in Electromagnetics, Wiley-IEEE Press, 1999.
doi:10.1109/9780470544686
5. Vinoy, K., J. Abraham, and V. Varadan, "On the relationship between fractal dimension and the performance of multi-resonant dipole antennas using Koch curves," IEEE Transactions on Antennas and Propagation, Vol. 51, 2296-2303, Sep. 2003.
doi:10.1109/TAP.2003.816352
6. Gianvittorio, J. and Y. Rahmat-Samii, "Fractal antennas: A novel antenna miniaturization technique, and applications," IEEE Antennas and Propagation Magazine, Vol. 44, 20-36, Feb. 2002.
doi:10.1109/74.997888
7. Barnsley, M., Fractals Everywhere, Academic Press, 1988.
8. Peitgen, H. O., H. Jurgens, and D. Saupe, Chaos and Fractals: New Frontiers of Science, Springer, Feb. 1993.
9. Werner, D. and S. Ganguly, "An overview of fractal antenna engineering research," IEEE Antennas and Propagation Magazine, Vol. 45, 38-57, Feb. 2003.
doi:10.1109/MAP.2003.1189650
10. Sarkar, T. K., S. M. Rao, and A. Djordjevic, "Electromagnetic scattering and radiation from finite microstrip structures," IEEE Transactions on Microwave Theory and Techniques, Vol. 38, 1568-1575, Nov. 1990.
11. Luebbers, R. and H. Langdon, "A simple feed model that reduces time steps needed for FDTD antenna and microstrip calculations," IEEE Transactions on Antennas and Propagation, Vol. 44, 1000-1005, Jul. 1996.
12. Luebbers, R., L. Chen, T. Uno, and S. Adachi, "FDTD calculation of radiation patterns, impedance, and gain for a monopole antenna on a conducting box," IEEE Transactions on Antennas and Propagation, Vol. 40, 1577-1583, Dec. 1992.
doi:10.1109/8.204752
13. Berenger, J. P., "A perfectly matched layer for the absorption of electromagnetic waves," Journal of Computational Physics, Vol. 114, No. 2, 185-200, 1994.
doi:10.1006/jcph.1994.1159
14. Berenger, J. P., "Three-dimensional perfectly matched layer for the absorption of electromagnetic waves," Journal of Computational Physics, Vol. 127, 363-379, 1996.
doi:10.1006/jcph.1996.0181
15. Berenger, J. P., "Making use of the PML absorbing boundary condition in coupling and scattering FDTD computer codes," IEEE Transactions on Electromagnetic Compatibility, Vol. 45, 189-197, May 2003.
doi:10.1109/TEMC.2003.810803
16. Kunz, K. and L. Simpson, "A technique for increasing the resolution of finite-difference solutions of the maxwell equation," IEEE Transactions on Electromagnetic Compatibility, Vol. 23, 419-422, Nov. 1981.
17. Jurgens, T. and A. Taflove, "Three-dimensional contour FDTD modeling of scattering from single and multiple bodies," IEEE Transactions on Antennas and Propagation, Vol. 41, 1703-1708, Dec. 1993.
doi:10.1109/8.273315
18. Dey, S. and R. Mittra, "A locally conformal finite-difference timedomain (FDTD) algorithm for modeling three-dimensional perfectly conducting objects," IEEE Microwave and Guided Wave Letters, Vol. 7, 273-275, Sep. 1997.
doi:10.1109/75.622536
19. Yu, W. H. and R. Mittra, "A conformal FDTD algorithm for modeling perfectly conducting objects with curve-shaped surfaces and edges," Microwave and Optical Technology Letters, Vol. 27, No. 2, 136-138, 2000.
doi:10.1002/1098-2760(20001020)27:2<136::AID-MOP16>3.0.CO;2-Q