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Abstract—A set of algorithms, specifically developed to facilitate
an effective modeling of fractal-boundary microstrip antennas in the
analysis of such structures through numerical electromagnetic (EM)
solvers is presented in this paper. A fractal generator based on
the implementation of an Iterated Function System (IFS) produces
the geometry specified in accordance with the user-defined input
parameters. The structure is created through a solver-specific interface
and is thus applicable to a commercially available EM simulation suite.
The generation of specific shapes through these algorithms provides
a flexible method to study different geometries without the need to
modify either the interface or the solver. Three structures based on the
Minkowski fractal obtained through these techniques have been studied
using two EM solvers for comparison. The frequency-domain results
show good agreement between the two solvers, thus validating the
algorithms implemented. Complex structures with higher iterations
can be studied using these algorithms.

1. INTRODUCTION

Methods for refining simulation algorithms to analyze electromag-
netic problems involving complex structures have been of interest
to engineers and scientists for some time. One such algorithm that
requires minor modifications is the generation of structures for antenna
simulation using the finite-difference time-domain (FDTD) method [1].
For example, in case of microstrip antennas with patches having
fractal-like boundaries, analytical methods are not only difficult to
apply but also inaccurate when the geometry is not well defined.
For higher iterations of fractal geometries, the structures become
increasingly complex and extremely difficult to draw without a known
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mathematical algorithm to define each iteration of the fractal. A
faithful reproduction of the geometry is also a necessity as the structure
is scaled down. In this paper we first introduce an algorithm to
specifically define the geometry for a Minkowski fractal, and then
we use the output to model fractal microstrip antennas. The fractal
geometry has been interfaced with both an in-house FDTD code
and the commercial electromagnetic simulation suite CST Microwave
Studio R©. Since the use of higher iterations has been shown to allow
antenna miniaturization [2], the performance of these algorithms is
tested by comparing the results obtained for a square patch and the
first two Minkowski iterations derived from it.

Following this brief introduction, we have divided the rest of
the paper as follows: a general overview of this fractal series is
given in Section 2, where the algorithm referred to as ‘Minkowski
fractal algorithm (MFA)’ is discussed. A description of the interfaces
developed to implement the geometry under analysis (including the
conducting patch obtained through the MFA) is given in Section 3.
Section 4 addresses several design considerations in the FDTD code,
and the simulation results for three types of microstrip patches are
discussed in Sections 5 and 6. Finally, we conclude in Section 7.

2. MINKOWSI FRACTAL ALGORITHM (MFA)

Fractals, as defined by Mandelbrot [3], are recursively generated
geometries with self-similarities and fractional dimensions. There are
different mechanisms to generate fractals. The algorithms developed in
this work are based on a subset of fractals, referred to as deterministic,
which can be obtained using scaled-down and rotated copies of an
initial geometry. Thus a recursive algorithm based on a deterministic
fractal can be developed to generate any occurrence of such fractal for
a given number of iterations. For example, the first four iterations of
the Minkowski fractal, shown in Fig. 1, can be derived from the square
patch through a specific algorithm.

(a) (b) (c) (d)

Figure 1. Minkowski patches for (a) first, (b) second, (c) third, and
(d) fourth iterations.
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The MFA can be implemented through the three parameters
shown in Fig. 2(a). Here, a is the length of the generator, b is the
indentation width, and h is the indentation depth. For a first iteration,
a is set equal to the length of the initiator (Fig. 2(b)), b is chosen as a
fraction of a, and h is related to a through the indentation factor, ρ:

ρ =
h

a/3
(1)

The choice of parameters b and ρ determines the overall area that
is removed off the patch, and thus its fractal dimension [4], which is a
measure of its space-filling properties and complexity mathematically
related to multi-resonant operation [5]. This number can be calculated,

b

a

h

(a) (b) (c)

Figure 2. Generation of a Minkowski fractal patch: (a) generator, (b)
initiator, (c) first iteration (M1).

Table 1. Fractal dimension for different values of the indentation
factor.

ρ Fractal dimension
0.10 1.05
0.20 1.10
0.30 1.14
0.40 1.18
0.50 1.22
0.60 1.27
0.70 1.32
0.80 1.36
0.90 1.41
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for a general case, by solving the following equation [6]:
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hn

)D

, (2)

where kn is the number of copies of the initiator scaled by hn. As
also discussed in [6], the fractal dimension of a fractal patch must
be calculated based on the geometry of one side only, since the self-
similarity is valid for straight segments and not for closed structures.
Using this approach, the fractal dimension of a given iteration of a
Minkowski patch can be found by considering the initiator as a segment
of length a, equal to the side of the quad. For example, the fractal
dimension, D, for a first Minkowski iteration, is obtained from

k1

(
1
h1

)D

+ k2

(
1
h2

)D

= 1, (3)

where k1 = 3 and h1 = 3 represent the three horizontal segments,
while k2 = 2 and h2 = 3/ρ represent the vertical segments (five
segments in total), and the indentation length, b, has been fixed
to one third of a. The solution of (3), for several values of the
indentation factor, yields the fractal dimensions shown in Table 1.
The MFA has been implemented from an iterated function system
(IFS) specifically defined for this geometry. An IFS is defined as the
recursive application of N affine transformations {wn, n = 1, . . . , N}
to an initial geometry [7, 8]. Following the discussion presented in [9],
this can be expressed, using matrix notation, as:

wn(x, y) =
(

a b
c d

)
·
(

x
y

)
+

(
e
f

)
, (4)

where a, b, c, and d control rotation and scaling, while e and f control
linear translation, and all six parameters are real numbers. Considering
an initial geometry A (a segment of a given length, for example) and
a set of linear transformations {wi, i = 1, . . . , N}, a first iteration
is produced by first applying each transformation wi to the initial
geometry A, and then combining the resulting geometries wi(A) by

W (A) =
N⋃

i=1

wi(A), (5)

where W is the Hutchinson operator [8]. The fractal geometry is
then obtained by repeatedly applying this operator to the output of
the previous step. This is illustrated in [9] for a Koch curve. In
this work, an IFS has been defined and implemented to obtain the
Minkowski fractal which is used to form the closed patch. The iterative
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process involved in the generation of these fractals is described briefly
as follows. For the generation of the desired fractal geometry based on
the Minkowski island, the IFS technique is applied by considering the
initiator shown in Fig. 2(a), with parameters a, b, and h (as a function
of ρ). A segment of length a is chosen as the original geometry, and five
transformations {w1, . . . , w5} are applied to obtain the five segments
labeled in Fig. 3(a). The same process can be recursively applied to
each resulting segment to yield the next iteration. As an example, the
first three iterations obtained following this method are also depicted
in Fig. 3 for a = 1, b = 0.4, and ρ = 0.5. The corresponding Minkowski
patch is achieved by applying rotation, translation and symmetry to
form a closed geometry.

The algorithm produces a list of points containing the coordinates
of all vertices in the geometry. Special care is taken to avoid
redundant points which result from applying the aforementioned
rotation, translation and symmetry transformations. This list is then
stored for further processing as needed. The four fractal patches shown
in Fig. 4 show the effect of ρ in the final geometry. In order to compare

ω1 ω5

ω3

ω2 ω4

(a) IFS

(b) Iteration 1 (c) Iteration 2 (d) Iteration 3

Figure 3. (a) Generator obtained from the Minkowski IFS, and first
three iterations for a = 1, b = 0.4, and ρ = 0.5.

(a) ρ=0.2 (b) ρ=0.4 (c) ρ=0.6 (d) ρ=0.8

Figure 4. First iteration, M1, for b = a/3 and four different values of
ρ.
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the results obtained from the FDTD simulation with those given by
the commercial electromagnetic simulation suite, two interfaces were
developed to have a single MFA which is independent of the simulation
method. This not only provides flexibility (alternate geometries can
be modeled by replacing the IFS in the algorithm) but also allows the
user to easily change the size or shape of the structure by adjusting
the input parameters.

Table 2. Coordinates of vertices for the geometry shown in Fig. 5.

Point x y Point x y
1 −1.5 −1.5 11 1.5 1.5
2 −0.5 −1.5 12 0.5 1.5
3 −0.5 −1 13 0.5 1
4 0.5 −1 14 −0.5 1
5 0.5 −1.5 15 −0.5 1.5
6 1.5 −1.5 16 −1.5 1.5
7 1.5 −0.5 17 −1.5 0.5
8 1 −0.5 18 −1 0.5
9 1 0.5 19 −1 −0.5
10 1.5 0.5 20 −1.5 −0.5
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Figure 5. Output of Minkowski fractal algorithm (the dots correspond
to the points listed in Table 2).
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Figure 6. Location of Ex and Ey nodes at interfaces between the
patch and the substrate.

3. INTERFACES TO ELECTROMAGNETIC SOLVERS

3.1. Interface to the Commercial EM Solver

In this case, the interface is written in the programming language
specified by the commercial software. The nodes in the list are
connected, in order, until a closed geometry is obtained. This process is
illustrated for a first iteration M1 with a = 3, b = 1, and ρ = 0.5. The
coordinates of all 20 points needed to reproduce the geometry are given
in Table 2, where the origin is located at the center of the structure;
the vertices of the resulting patch are shown as dots in Fig. 5.

3.2. Interface to the in-house FDTD Code

The conducting patch is implemented as a perfect electric conductor
(PEC) by setting the tangential components of the electric field that lie
on the patch to zero. For those nodes that fall on an interface between
the patch and the external medium (free space), one of the tangential
components of the electric field, Ex or Ey, lies exactly on the interface
and thus belongs to the PEC region, while the other one falls outside
the patch geometry. Consequently, the PEC condition is only applied
to the former. For the geometry shown in Fig. 6, the PEC condition
is only applied to Ex(Ey) for the free space cells located at the right
(top) interface. An additional computer code was developed to include
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(a) (b)

Figure 7. Equivalent circuit of the feed probe; (b) FDTD detailed
geometry of gap-feed model used.

this algorithm. The code works as follows: first, all points contained
in the circular list described earlier are mapped into a mesh defined
by the resolution that will be used in the simulation, according to the
specific requirements. The patch is no longer defined by its contour,
and individual points are considered instead. The two tangential
components of the electric field are examined separately and a decision
algorithm extracts only those points that actually belong to the patch
for each case. The main FDTD solver also includes a module that
translates this information to the geometry of the problem according
to the location of the patch. The implementation of the dielectric
substrate with given electrical and physical parameters, the ground
plane, the placement of the patch on the substrate, and the location
of the source as a discrete port are also included in the interfaces to
easily generate the entire geometry that is to be analyzed.

4. FDTD: DESIGN CONSIDERATIONS

The general FDTD method defines a rectangular lattice where each
field component within a single cell is located at the midpoint of an
edge (electric field components) or at the center of a cell face (magnetic
field components). The constitutive material parameters are used to
model the geometry of the problem by assigning the values for each
cell throughout the geometry. In order to do so, all cells in the entire
simulation domain are initially assigned a value corresponding to free
space. Those cells that belong to a medium other than free space are
then assigned the appropriate parameters. This is done individually for
each field component, thus providing higher accuracy in the modeling
for those cells where an edge is located at the interface between two
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different media. As mentioned earlier, the metallic sheets are modeled
as PEC surfaces by assigning the tangential components of the electric
field that lie on their surface a value of zero. A simple case would
be a square PEC patch, located on the x-y plane, with dimensions
a× a. An easy way to accurately model the patch would be to assign
dx and dy a value of δ = a/k, where δ is an integer, and k is chosen
so that the longest edge of an FDTD cell is short enough to provide
good frequency resolution at the highest frequency on interest [10].
For the square patch, it is straightforward to match the grid to the
dimensions of the patch, i.e., to make the boundaries fall exactly on
cell edges, and only special care must be taken for those cells. The
individual electric field components tangential to the patch, inlcuding
those corresponding to edges that fall on its boundary, are set to zero,
while the other components are updated according to the parameter
that was previously assigned. Consequently, a square patch with a side
length of a can be easily implemented in the FDTD code by ‘counting’
the number of field components that lie on the patch. The discrete port
feed is implemented following the gap feed model given in [11], which
is an extension of the one described in [12]. This model, depicted in
Fig. 7, uses a voltage source Vs with an internal resistor, Rs, which is
included to dissipate the energy that is reflected from the patch, thus
reducing the number of steps needed for the FDTD run. The use of
this resistor has been reported to reduce the necessary time steps by
up to 32 times for this simple gap feed model [11].

5. SIMULATION RESULTS

The frequency response of the three geometries based on the Minkowski
fractal have been analyzed by computing, for each of them, the
return loss (S11) at frequencies ranging from DC up to 20 GHz. A
55 × 55 × 0.795mm (length × width × thickness) dielectric slab with
a relative permittivity of 2.2 is implemented as the substrate, on top
of which the conducting patch is mounted. The patch, referred to as
Mi where M stands for ‘Minkowski’ and i is the iteration number
(i = 0, 1, 2), is modeled as a zero-thickness perfectly-conducting
sheet as described in the previous section. The computational grid
is defined by ∆x = ∆y = 0.5mm, while the cell size along z is
fixed to ∆z = 0.265mm in order to have exactly three mesh cells
inside the substrate along this direction. At the air-dielectric interface,
the average value of the dielectric constant on either side is used for
tangential fields. According to these parameters, the substrate takes
110 × 110 × 3 cells, while the M0 patch (located at the center of the
substrate on the x-y plane) takes 80 × 80 cells. The ground plane
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is implemented as a zero-thickness, finite PEC sheet located directly
underneath the substrate. The boundaries of the simulation domain
are set 5 mesh cells away from the structure in all directions, and
12 perfectly matched layers (PML) based on the split-field approach
discussed in [13–15] are used to absorb outgoing waves. There are
9 cells on top of the patch to simulate the vacuum region. With
all these considerations, the simulation domain consists of a total of
122 × 122 × 28 cells surrounded by the 12 perfectly absorbing layers.
The results from the simulations for each geometry are given next.

5.1. Square Patch, M0

A square (40 × 40 mm) patch is obtained from the fractal algorithm
for i = 0 by using a non-scaled version of the initiator to generate
the closed geometry given by the four points corresponding to the
vertices of the square. The FDTD interface produces a matrix with
the information for all tangential electric field components within the
extent of the patch. This matrix is used in the main code to apply the
material parameters at the right nodes where the patch is located. The
geometry of the imported patch is shown in Fig. 8, where the dot at the
center of the structure represents the location of the feed. The cross-
section along the dotted line shows the extent of the substrate and the
location of the patch. The geometry displayed in the figure corresponds
to the x the components of the electric field. The horizontal strips
on either side of the patch correspond to the averaged values of the
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Figure 8. Geometry of the problem in the FDTD space: top view
(left) and cross-section along dotted line (right).
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Figure 9. Patch antenna source voltage (a) and current (b) for 15,000
time steps.
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Figure 10. Frequency response (S11) for M0.

permittivity for Ex at the interface between the substrate and free
space. The simulation was run for a total of 15,000 steps, and the
steady-state source current and voltage are shown in Figs. 9(a) and
(b), respectively. Fig. 10 shows the scattering parameter S11 given by
the in-house FDTD code, represented by a solid line, which is compared
to that obtained from CST MWS R© (dotted line). Both plots are in
very good agreement, and the locations of the operating resonances
are highly correlated, with minor discrepencies in the peak values at
resonant frequencies. This agreement is expected since the boundaries
of the square patch, in both cases, can be aligned with the mesh. The
importance of generating a mathematics-based geometry for fractals
will become evident later when the first and second generation fractals
are compared.
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Figure 11. Geometry of the problem in the FDTD space for (a) M1,
and (b) M2.

5.2. First (M1) and Second (M2) Iterations

As in the previous case, the geometry of the structure under study,
already implemented in the FDTD solver, is shown in Fig. 11(a) and
(b) for M1 and M2, respectively. The parameters of the initiator
are a = 40mm, b = a/3, and ρ = 0.5. The source voltage and
current (not shown) were also monitored to ensure steady-state, and
the frequency response obtained for these fractal structures is shown
in Fig. 12. The results still show good agreement between FDTD and
CST MWS R©, especially for M1; as the edges of the structure attain a
more complex shape for M2, however, a greater discrepancy will result
as shown in Fig. 12(b). This is due to a non-conformity of the structure
to the generated mesh and the change in the electrical length of the
fractal perimeter as compared to the actual structure. In such cases,
conformal methods need to be implemented.

6. DISCUSSION

The effectiveness of the algorithms developed in this work (fractal
generator and two interfaces) is evident from the good match between
the results given by the two simulation codes. As stated in the previous
section, some discrepancies at higher fractal iterations are due to
the implementation of the perimeter of the patch, whose resolution
eventually depends on the cell size. This can be explained by examining
the particular implementation of the patch in the FDTD mesh: if the
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Figure 13. (a) Mesh representation of the geometry of the M1 patch;
(b) Detail of dotted region.

tangential electric field components (located exactly at the midpoint
along the corresponding edge of a cell) lie on the patch, it is assumed
that, as far as that component is concerned, the entire cell belongs
to the patch, or to free space otherwise. The cells along the vertical
and horizontal segments of an indentation as detailed in Fig. 13 show
the loss of resolution for those cells that intersect a boundary (they
will be interpreted by the code as completely filled with PEC or free
space depending on the exact location of the midpoint of the edge
with respect to the interface. Along the vertical segment, since both
field components lie on the patch, the entire cell is implemented as
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PEC for both Ex and Ey. For the horizontal segment, the Ex (Ey)
component lies outside (inside) the patch, and the cell is modeled,
for this component, as fully outside (inside). As a result, the gridded
structure will be slightly larger or smaller (according to the cell size)
than expected, and the perimeter of the patch will no longer match the
actual one. This explains the frequency shifts observed in the results.
This gridding error will have more implications in the results as the
number of these ‘special’ cells increases. In these examples, there are
216 such cells for M1, while this number rapidly increases to 432 with
only one iteration. The higher the iteration number, the less likely
that the fractal boundary will conform to the grid, thus introducing
modeling errors. A proper gridding algorithm will minimize the error.
Other ways to address these errors could include the use of a finer mesh
at the cost of computer time and memory requirements, especially
at higher frequencies. Sub-gridding or contour path finite-difference
time-domain (CPFDTD) schemes have also been proposed to model
PEC boundaries [16, 17]. Static mesh refinement techniques are well
suited only when the structure involves Euclidean geometries and
the mesh can be chosen to conform to the outer boundaries. For
fractals, complex adaptive mesh refinement (AMR) techniques may
be required [18]. A simpler approach which accurately models PEC
surfaces without sub-gridding makes use of conformal finite-difference
time-domain (CFDTD) algorithms with locally-conformal grids [19].

7. CONCLUSION

An electromagnetic solver based on the FDTD method, combined
with a set of algorithms to implement complex geometries of radiating
structures has been presented. Specifically, an algorithm to generate
fractals and look into their radiation characteristics has been described.
The fractals are derived from a Euclidean shape through a software-
based etching process. The algorithm can also be used to generate
fractals that can be applied to the commercial simulation software.
The integration of IFS algorithms with two electromagnetic solvers,
one of them being an in-house FDTD code with perfectly matched
layers to truncate the simulation space, has been approached in this
work. The algorithms have been tested for a microstrip patch antenna
with several iterations of the Minkowski series. The results show that
the software that was developed to analyze fractal structures can be
used as a standalone tool to predict their radiation properties. The
method highlighted in this paper could be a useful tool in simulation
studies involving higher-order fractals.
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