Vol. 12
Latest Volume
All Volumes
PIERM 130 [2024] PIERM 129 [2024] PIERM 128 [2024] PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2010-04-15
Electromagnetic Bandgap Analysis of 1D Magnetized Ppc with Oblique Incidence
By
Progress In Electromagnetics Research M, Vol. 12, 39-50, 2010
Abstract
The modified finite-difference time-domain (M-FDTD) method is proposed to analysis electromagnetic bandgap of 1D layered anisotropic plasma photonic crystal(PPC) under the situa-tion of the EM wave oblique incidence. The presence of it avoids the usage of two-dimensional FDTD iterative and greatly improving the computational efficiency. By the algorithm, the reflec-tion coefficients of electromagnetic waves with different incidence angles are computed, and compare the results with the analytical solution. The results show that the method of the accuracy and effectiveness. Finally, the algorithm is applied to calculate electromagnetic bandgap charater-istics of PPC with the different incident angles, and their reflection coefficients under the condi-tion of the different incident angles are analyzed.
Citation
Lixia Yang, Yingtao Xie, Pingping Yu, and Gang Wang, "Electromagnetic Bandgap Analysis of 1D Magnetized Ppc with Oblique Incidence," Progress In Electromagnetics Research M, Vol. 12, 39-50, 2010.
doi:10.2528/PIERM10012211
References

1. John, S., "Strong localization of photons in certain disordered dielectric superlattices," Phys. Rev. Lett., Vol. 58, No. 20, 2486-2489, 1987.
doi:10.1103/PhysRevLett.58.2486

2. Yablonovitch, E., "Inhibited spontaneous emission in solid-state physics and electronics," Phys. Rev. Lett., Vol. 58, No. 23, 2059-2060, 1987.
doi:10.1103/PhysRevLett.58.2059

3. Hojo, H. and A. Mase, "Dispersion relation of electromagnetic wave in one-dimensional plasma photonic crystals," Plasma Fusion Res., Vol. 80, 89, 2004.

4. Guo, B., "Transfer matrix for obliquely incident electromagnetic waves propagating in one dimension plasma photonic crystals," Plasma Science and Technology, Vol. 11, No. 1, 19-22, 2009.

5. Liu, S. B., C. Q. Gu, and J. J. Zhou, "FDTD simulation for magnetized plasma photonic crystals," Acta Physica Sinica, Vol. 55, No. 3, 1283-1289, 2006 (in Chinese).

6. Liu, S., W. Hong, and N. Yuan, "Finite-difference time-domain analysis of unmagnetized plasma photonic crystals," International Journal of Infrared and Millimeter Waves, Vol. 27, No. 3, 403-423, 2006.
doi:10.1007/s10762-006-9075-x

7. Dikshitulu, K. K., Electromagnetics of Complex Media, CRC Press, 1999.

8. Ginzberg, V. L., The Propagation of Electromagnetic Waves in Plasma, Pergammon Press, New York, 1970.

9. Chen, Q., M. Katsurai, and P. H. Aoyagi, "An FDTD formulation for dispersive media using a current density," IEEE Trans. Antennas Propagat., Vol. 46, No. 10, 1739-1746, 1998.
doi:10.1109/8.736632

10. Taflove, A. and S. C. Hagness, Computational Electrodynamics: The Finite-difference Time-domain Method, 3rd Ed., Artech House, Boston, 2005.