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Abstract—The modified finite-difference time-domain (M-FDTD)
method is proposed to analysis electromagnetic bandgap of 1D
layered anisotropic plasma photonic crystal (PPC) under the situation
of the EM wave oblique incidence. The presence of it avoids
the usage of two-dimensional FDTD iterative and greatly improves
the computational efficiency. By the algorithm, the reflection
coefficients of electromagnetic waves with different incidence angles
are computed, and compare the results with the analytical solution.
The results show that the method of the accuracy and effectiveness.
Finally, the algorithm is applied to calculate electromagnetic bandgap
charateristics of PPC with the different incident angles, and their
reflection coefficients under the condition of the different incident
angles are analyzed.

1. INTRODUCTION

Since the concept of photonic crystal was proposed by John [1] and
Yablonovitch [2], due to its own unique characteristics of controlling
the flow of light, it has been focused on the optical fields. In addition,
due to its own unique characteristics (such as the periodicity of the
refractive index, and the characteristic of the forbidden band and pass
band), the plasma thus has become the active research topic of the
field. So recently Hojo et al. [3] combine the above two together to
propose the concept of plasma photonic crystal. Thus it rapidly has
become the active research topic of the field. However, the plasma is
complex medium which is only dependent on the frequency without the
external magnetic, and is also anisotropic with the external magnetic
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field. Currently, the finite difference time domain (FDTD) method
and transfer matrix method are used to analyze one dimensional
(1D) plasma photonic crystal (PPC). By using the transform matrix
method in Ref. [4], the dispersion diagram of unmagnetized plasma
without collision frequency was only derived, and by the FDTD method
in Refs. [5, 6], the features of the PPC with normal incidence were
analyzed, and the effect of the incident angle is neglected. In practice,
the electromagnetic wave often obliquely illuminates the PPC, so it is
important how incident angle effects the bandgap of the PPC in theory
and practical application.

In this paper, in order to solve the above problem, a M-
FDTD implementation is proposed by which EM wave transmission
characteristic can be analyzed for oblique incidence on stratified
medium. The FDTD iterative formulas are deduced in the TE and TM
wave oblique incidence situation, and the revisions of the connection
boundary (CB) and absorbing boundary condition (ABC) in the
oblique incidence situation are carried out. By the algorithm, the
reflection coefficients of the plasma slab are calculated in the TE and
TM wave oblique incidence situation. Finally, the algorithm is applied
to calculate electromagnetic scattering by the PPC with the different
incident angles, and their reflection coefficients under the condition of
the different incident angles are analyzed.

2. M-FDTD ITERATIVE FORMULA IN THE OBLIQUE
INCIDENCE SITUATION

Consider a TMz polarized wave with time factor ejωt and the incident
angle θ incident from an isotropic medium with permittivity ε1 = ε0

and permeability µ1 = µ0 upon another medium with permittivity ε2

and permeability µ2, seen in Fig. 1. We assume the plane of incidence
to be parallel to the xoz plane. By the phase-matching conditions the
k vectors of all plane waves will be in the xoz plane. Thus all field
vectors will be dependent on x and z only and independent of y. Since
∂/∂y = 0, the Maxwell equations become, in Region 1.





∂Ex

∂z
− ∂Ez

∂x
= −µ0jωHy

− ∂Hy

∂z
= ε0jωEx

∂Hy

∂x
= ε0jωEz

(1)

Taking the partial derivative of the second equation with respect
to z and the third one with respect to x, then substituting the results
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Figure 1. Reflection and transmission of TM waves at a plane
boundary separating regions 1 and 2.

into the first one in Eq. (1) system, so we can obtain

∂2Hy

∂x2
+

∂2Hy

∂z2
+ µ0ε0ω

2Hy = 0 (2)

The solution of Eq. (2) can be obtained easily as follows

Hy = H0e
j(kxx+kzz)+jωt (3)

So the solution for the 1-D wave propagating in x-direction is




Hy1D = H0e
jkxx+jωt

Ez1D =
H0

ωε0
kxejkxx+jωt

(4)

Substituting Eq. (4) into Eq. (1) system and eliminating Ez, then
transforming back to the time domain yields





∂Hy1D

∂z
= −ε0

∂Ex1D

∂t
k2

1

k2
1z

∂Ex1D

∂z
= −µ0

∂Hy1D

∂t

(5)

where k1 is wave number in the Region 1, k1z is the z-component of
the vector

⇀

k1, and k1z = k1 cos θ.
By the same procedure of Eq. (5), transforming the 1D modified

equations of the Ampere’s Law in Region 2 (in the plasma region) to
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the frequency domain yields




∂Hy1D

∂z
= −ε2jωEx1D

k2
2

k2
2z

∂Ex1D

∂z
= −µ2jωHy1D

(6)

where k2 is wave number in the Region 2, k2z is the z-component of
⇀

k2, and k2z = k2 cosϕ. Combining the phase-matching conditions and
the boundary conditions, we can obtain k1x = k2x, k2

2z = k2
2 − k2

2x =
k2

2 − k2
1x. Substituting the two equations into the second equation of

Eq. (6), finally we can obtain

∂Ex1D

∂z
= −jωµ2

(
1− k2

1x

k2
2

)
Hy1D (7)

Using kx = k sin θ, k = ω
√

εµ, and assuming

ξy1D =
(

εr2 − εr1 sin2 θ

εr2

)
Hy1D (8)

Then Eq. (7) yields
∂Ex1D

∂z
= −jωµ2ξy1D (9)

Substituting Eq. (9) into the second equation of Eq. (6), and combining
the results together with Eq. (8), so





∂Hy1D

∂z
= −ε2jωEx1D

∂Ex1D

∂z
= −µ2jωξ

ξ =
(

εr2 − εr1 sin2 θ

εr2

)
Hy1D

(10)

Similarly, Ey1D, Hx1D have the same formats. Then Ex1D, Hy1D,
Ey1D, Hx1D are converted to the matrix form as follows





∂H
∂z

= −ε0εr2jωE

∂E
∂z

= −µ0jωξ

ξ =
(

εr2 − εr1 sin2 θ

εr2

)
H

(11)



Progress In Electromagnetics Research M, Vol. 12, 2010 43

where E =
[
Ex1D

Ey1D

]
, H =

[
Hy1D

Hx1D

]
, ξ =

[
ξy1D

ξx1D

]
. According to Ref. [7],

εr2 the relative permittivity of the magnetized plasma is

εr2 = I +
σ

jωε0
(12)

where σ is the conductivity matrix. According to Ref. [8], the
constitutive relation for a cold magnetoplasma is given by

dJ
dt

+ vJ = ε0ω
2
pE + ωb × J (13)

where v is the collision frequency, ωb the electron gyrofrequency, ωp

the plasma frequency. Eq. (13) in Cartesian coordinate is expressed as
in matrix form. 


dJx

dt
dJy

dt


 = ε0ω

2
p

[
Ex

Ey

]
+ Ω

[
Jx

Jy

]
(14)

where Ω =
(−v −ωb

ωb −v

)
. In order to obtain the time-domain σ in

Eq. (12), we firstly transform Eq. (14) into the frequency domain and
obtain σ matrix in the frequency-domain according to the Ohm’s law
J = σE

σ = ε0ω
2
p (jωI−Ω)−1 =

ε0ω
2
p

(jω + v)2 + ω2
b

(
jω + v −ωb

ωb jω + v

)
(15)

Then by the IFFT of Eq. (15), σ in the time-domain is expressed as,
when v > 0

σ (t) = ε0ω
2
pe
−vt

(
cosωbt − sinωbt
sinωbt cosωbt

)
U(t) = ε0ω

2
pe

ΩtU(t) (16)

when v = 0

σ (t) =
ε0ω

2
p

2

(
cosωbt − sinωbt
sinωbt cosωbt

)
U(t) =

ε0ω
2
p

2
eΩtU(t) (17)

where U(t) is the unit step function.
The FDTD iterative formula under the condition of v = 0 is

similar to v > 0, so we only derive the FDTD iterative formula under
the condition of v > 0. Substituting Eq. (12) and Eq. (16) into Eq. (11),
then transform the results into the time domain. We can obtain



∂H
∂z

= −ε0
∂E
∂t

− σ (t) ∗E

∂E
∂z

= −µ0
∂ξ

∂t
∂ξ

∂t
=

(
εr2 − εr1 sin2 θ

) ∂H
∂t

+
1
ε0

[σ (t) ∗H (t)− σ (t) ∗ ξ (t)]

(18)
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Assuming 



ϕ (t) = eΩtU (t) ∗E (t)

χ (t) = eΩtU (t) ∗ ξ (t)

ψ (t) = eΩtU (t) ∗H (t)

(19)

and by the JE convolution (JEC) method in Ref. [9], the convolutions
in Eq. (19) system can be deduced, then the FDTD iterative formula
of Eq. (18) and Eq. (19) can be obtained

ξn+ 1
2

(
k +

1
2

)
= ξn− 1

2

(
k +

1
2

)
− ∆t

µ0∆z
[En (k + 1)−En (k)] (20)

Hn+ 1
2

(
k +

1
2

)
= Hn− 1

2

(
k +

1
2

)
+

1
εr2 − εr1 sin2 θ[

ξn+ 1
2

(
k +

1
2

)
− ξn− 1

2

(
k +

1
2

)]

+
∆tω2

p

εr2−εr1 sin2 θ

[
χn

(
k+

1
2

)
−ψn

(
k+

1
2

)]
(21)

χn

(
k +

1
2

)
= e−v∆t

(
cosωb∆t − sinωb∆t
sinωb∆t cosωb∆t

)
χn−1

(
k +

1
2

)

+∆t · e− v∆t
2


cos

(
ωb∆t

2

)
− sin

(
ωb∆t

2

)

sin
(

ωb∆t
2

)
cos

(
ωb∆t

2

)



ξn− 1
2

(
k+

1
2

)
(22)

ψn

(
k +

1
2

)
= e−v∆t

(
cosωb∆t − sinωb∆t
sinωb∆t cosωb∆t

)
ψn−1

(
k +

1
2

)

+∆t · e− v∆t
2


cos

(
ωb∆t

2

)
− sin

(
ωb∆t

2

)

sin
(

ωb∆t
2

)
cos

(
ωb∆t

2

)



Hn− 1
2

(
k +

1
2

)
(23)

En+1(k) = En (k)− 1
ε0

∆t

∆z

[
Hn+1

2

(
k+

1
2

)
−Hn+ 1

2

(
k− 1

2

)]

−∆tω2
pϕ

n+ 1
2 (k) (24)

ϕn

(
k +

1
2

)
= e−v∆t

(
cosωb∆t − sinωb∆t
sinωb∆t cosωb∆t

)
ϕn−1

(
k +

1
2

)
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+∆t · e− v∆t
2


cos

(
ωb∆t

2

)
− sin

(
ωb∆t

2

)

sin
(

ωb∆t
2

)
cos

(
ωb∆t

2

)



En− 1
2

(
k +

1
2

)
(25)

Similarly, the FDTD iterative formula of the TEz polarized wave is

Hn+1/2

(
k+

1
2

)
= Hn−1/2

(
k+

1
2

)
− ∆t

µ0∆z
[En (k+1)−En (k)] (26)

En+1(k) = En (k)− ∆t

ε0

(
εr2 − εr1 sin2 θ

)
∆z[

Hn+1/2

(
k +

1
2

)
−Hn+1/2

(
k − 1

2

)]

+
ω2

p∆t

εr2 − εr1 sin2 θ
χn+ 1

2 (k) (27)

χn

(
k +

1
2

)
= e−v∆t

(
cosωb∆t − sinωb∆t
sinωb∆t cosωb∆t

)
χn−1

(
k +

1
2

)

+∆t · e− v∆t
2


cos

(
ωb∆t

2

)
− sin

(
ωb∆t

2

)

sin
(

ωb∆t
2

)
cos

(
ωb∆t

2

)



En− 1
2

(
k +

1
2

)
(28)

where E =
[
Ex1D

Ey1D

]
, H =

[
Hy1D

Hx1D

]
, χ =

[
χx1D

χy1D

]
.

3. REVISION OF MUR ABC AND CB

3.1. Revision of Mur ABC

In the FDTD computation, Mur ABC is employed. Under the
condition of the oblique incidence in the free space, Mur ABCs are
revised as follows:

Left Mur ABC: En+1 (k) = En (k + 1) +
cdt− dz cos θ

cdt + dz cos θ[
En+1 (k + 1)− En (k)

]
(29)

Right Mur ABC: En+1 (k) = En (k − 1) +
cdt− dz cos θ

cdt + dz cos θ[
En+1 (k − 1)− En (k)

]
(30)
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3.2. Revision of CB

Based on the CB theory in Ref. [10], under the condition of the oblique
incidence in the free space, CBs are also revised as follows

TEz :





En+1 (k0)=En+1 (k0)FDTD+
∆t

ε0∆z cos2 θ
H

n+ 1
2

i

(
k0− 1

2

)

Hn+ 1
2

(
k0− 1

2

)
=Hn− 1

2

(
k0− 1

2

)

FDTD

+
∆t

µ0∆z
En

i (k0)
(31)

TMz :





En+1 (k0)=En+1 (k0)FDTD+
∆t

ε0∆z
H

n+1
2

i

(
k0− 1

2

)

Hn+1
2

(
k0− 1

2

)
=Hn−1

2

(
k0− 1

2

)

FDTD

+
∆t

µ0∆z cos2 θ
En

i (k0)
(32)

4. VALIDATION OF MODIFIED FDTD ALGORITHM

In order to validate the accuracy of the above algorithm, we simulate
the transient propagation of the TEz and TMz polarized wave that
is obliquely incident with θ = π

6 , π
4 , π

3 on a magnetized plasma slab
with a thickness of 15.0 mm. The incident wave used in the simulation
is a Gaussian-derivative pulsed plane wave whose frequency spectrum
peaks at 50 GHz and is 10 dB down from the peak at 100 GHz. The
plasma parameters are v = 20 GHz, ωb = 100 GHz, ωp = 28.7GHz,
The spatial discretization, ∆z, used in the simulations is 75µm and
the time step ∆t =∆z/2c, is 0.125 ps, both ends of the computed space
are applied by the revision of Mur ABCs. In Figs. 2(a) and (b), the
reflection coefficients of the right circular polarization (RCP) of TMz

and TEz waves by using the M-FDTD algorithm are compared with
those of the analytical solution. From the two figures, the FDTD
method is in agreement with the analytical solution for the reflection
coefficients.

5. BANDGAP ANALYSIS OF MAGNETIZED PPC FOR
OBLIQUE INCIDENCE

In Fig. 3, the plane wave illuminates on 1D PPC with θ incident angle,
and the thicknesses of dielectric and plasma slab are both 200 grids, and
the relative permittivity in dielectric is εr = 4. The incident source,
spatial discretization and time step are all the same as the validation
example.

Example 1: Bandgap analysis under the condition of the different
oblique incident angle for the magnetized PPC. The parameters in
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FDTD computation are θ = 0, π
6 , π

4 , π
3 and v = 20GHz, ωp = 20GHz,

ωb = 100 GHz. The reflection coefficients of the TMz and TEz wave
are given in Fig. 4 and Fig. 5.
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Figure 2. Reflection coefficient magnitude of the RCP wave for θ = π
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3 . (a) TMz. (b) TEz.

Figure 3. The PPC in the oblique incidence.
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From Figs. 4(a) and (b), we can see that for TMz wave, the little
the incident angle is, the more significant the periodicity of the band-
gap is. When the incident angle is enough large, the band-gap of
the photonic crystals vanish. However, for TEz wave, the band-gap
increase and the center frequency move into the high frequency with the
increasing of the incident angle. So in order to increase the width of the
band-gap, different measures are adopted for different polarizations.

Example 2: Bandgap analysis under the condition of the different
oblique incident angle for the unmagnetized PPC. The parameters in
FDTD computation are θ = 0, π

6 , π
4 , π

3 and v = 20GHz, ωp = 20GHz,
ωb = 0 GHz. The reflection coefficients of the TMz and TEz polarized
wave are given in Fig. 6.
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From Fig. 6(a), we conclude that unmagnetized PPCs are similar
to magnetized PPCs. For TMz wave, the little the incident angle is, the
more significant the periodicity of the band-gap is. However, for TEz

wave, from Fig. 6(b), the band-gap increase and the center frequency
of it move into the high frequency with the increase of the incident
angle. So in order to increase the width of the band-gap, different
measures are adopted for different polarizations.

6. CONCLUSION

In this paper, a modified FDTD implementation is proposed by which
EM wave transmission characteristic can be analyzed for oblique
incidence on 1D PPCs. This method transforms two-dimensional
electromagnetic wave transmission question to one-dimensional one,
FDTD iterative formulas are deduced in the TE and TM wave oblique
incidence situation, and the revisions of the CB and ABC in the oblique
incidence situation are carried out. The EM wave reflection coefficients
of the plasma slab are calculated in the TE and TM wave oblique
incidence situation. The computed results and analytic solutions are
in good agreement. The computed results indicate the accuracy and
validity of this method. Finally, the algorithm is applied to calculate
electromagnetic scattering by the PPCs with the different incident
angles, and their bandgap charecteristics under the condition of the
different incident angles are analyzed.
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