Vol. 102
Latest Volume
All Volumes
PIER 180 [2024] PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2010-03-10
Optical Solitons with Higher Order Dispersion by Semi-Inverse Variational Principle
By
Progress In Electromagnetics Research, Vol. 102, 337-350, 2010
Abstract
This paper studies optical solitons, in presence of higher order dispersion terms by the aid of He's semi-inverse variational principle. Both Kerr law and power law are taken into consideration. The numerical simulations are also given to complete the analysis.
Citation
Patrice D. Green, Daniela Milovic, Dawn A. Lott, and Anjan Biswas, "Optical Solitons with Higher Order Dispersion by Semi-Inverse Variational Principle," Progress In Electromagnetics Research, Vol. 102, 337-350, 2010.
doi:10.2528/PIER10011910
References

1. Ballav, M. and A. R. Chowdhury, "On a study of diffraction and dispersion-managed soliton in a cylindrical media," Progress In Electromagnetics Research, Vol. 63, 33-50, 2006.
doi:10.2528/PIER06051601

2. Banaee, M. G. and J. F. Young, "High-order soliton breakup and soliton self-frequency shifts in a microstructured optical fiber," Journal of Optical Society of America B, Vol. 23, No. 7, 1484-1489, 2006.
doi:10.1364/JOSAB.23.001484

3. Banaei, H. A. and A. Rostami, "A novel proposal for passive all-optical demultiplexer for DWDM systems using 2-D photonic crystals," Journal of Electromagnetic Waves and Applications, Vol. 22, No. 4, 471-482, 2008.
doi:10.1163/156939308784150263

4. Banerjee, A., "New approach to design digitally tunable optical filter system for wavelength selective switching based optical networks ," Progress In Electromagnetics Research Letters, Vol. 9, 93-100, 2009.
doi:10.2528/PIERL09050303

5. Biswas, A., "Optical solitons: Quasi-stationarity versus Lie Transform," Optical and Quantum Electronics, Vol. 35, No. 10, 979-998, 2003.
doi:10.1023/A:1025121931885

6. Biswas, A. and S. Konar, Introduction to Non-Kerr Law Optical Solitons, CRC Press, Boca Raton, FL, USA, 2006.

7. Biswas, A., R. Kohl, M. E. Edwards, and E. Zerrad, "Soliton parameter dynamics in a non-Kerr law media," Progress In Electromagnetics Research C, Vol. 1, 1-35, 2008.
doi:10.2528/PIERC07121707

8. Biswas, A., D. Milovic, and M. E. Edwards, Mathematical Theory of Dispersion-managed Optical Solitons, Springer Verlag, New York, NY, USA, 2010.

9. Fu, Y., K. Li, and F. M. Kong, "Analysis of the optical transmission through the metal plate with slit array," Progress In Electromagnetics Research, Vol. 82, 109-125, 2008.
doi:10.2528/PIER08022013

10. Ganji, D. D., H. Tari, and M. B. Jooybari, "Variational iteration method and homotopy perturbation method for nonlinear evolution equations," Computers and Mathematics with Applications, Vol. 54, No. 7-8, 1018-1027, 2007.
doi:10.1016/j.camwa.2006.12.070

11. Ganji, Z. Z., D. D. Ganji, and A. Asgari, "Finding general and explicit solutions of high nonlinear equations by the exp-function method," Computers and Mathematics with Applications, Vol. 58, No. 11-12, 2124-2130, 2009.
doi:10.1016/j.camwa.2009.03.005

12. Ganji, Z. Z., D. D. Ganji, and M. Esmaeilpour, "Study on nonlinear Je®ery-Hamel flow by He's semi-analytical methods and comparison with numerical results ," Computers and Mathematics with Applications, Vol. 58, No. 11-12, 2107-2116, 2009.
doi:10.1016/j.camwa.2009.03.044

13. He, J. H., "Variational principles for some nonlinear partial differential equations with variable coefficients," Chaos, Solitons and Fractals, Vol. 99, No. 4, 847-851, 2004.
doi:10.1016/S0960-0779(03)00265-0

14. Heidari, A., S. F. Tayyari, and R. E. Sammelson, "An analytical approach to the stability of solitary solutions of cubic-quintic coupled non-linear Schrodinger's equations ," Communications in Nonlinear Science and Numerical Simulations, Vol. 14, No. 9-10, 3554-3560, 2009.
doi:10.1016/j.cnsns.2009.02.005

15. Khalique, C. M. and A. Biswas, "Optical solitons with parabolic and dual power law nonlinearity via Lie symmetry analysis," Journal of Electromagnetic Waves and Applications, Vol. 23, No. 7, 963-973, 2009.
doi:10.1163/156939309788355270

16. Kohl, R., D. Milovic, E. Zerrad, and A. Biswas, "Optical soliton perturbation in a non-Kerr law media," Optics and Laser Technology, Vol. 40, No. 4, 647-662, 2008.
doi:10.1016/j.optlastec.2007.10.002

17. Kohl, R., A. Biswas, D. Milovic, and E. Zerrad, "Optical solitons by He's variational principle in a non-Kerr law media," Journal of Infrared, Millimeter and Terrahertz Waves, Vol. 30, No. 5, 526-537, 2009.
doi:10.1007/s10762-009-9467-9

18. Lv, X., B. Tian, T. Xu, K.-J. Cai, and W.-J. Liu, "Analytical study of the nonlinear Schrodinger equation with an arbitrary linear time-dependent potential in quasi-one-dimensional Bose-Einstein condensates," Annals of Physics, Vol. 323, No. 10, 2554-2565, 2008.
doi:10.1016/j.aop.2008.04.008

19. Maurya, S. N., V. Singh, B. Prasad, and S. P. Ojha, "Modal analysis and waveguide dispersion of an optical waveguide having a cross-section of the shape of a cardioid," Journal of Electromagnetic Waves and Applications, Vol. 20, No. 8, 1021-1035, 2006.
doi:10.1163/156939306776930277

20. Medhekar, S., R. K. Sarkar, and P. P. Paltani, "Soliton pairing of two coaxially co-propagating mutually incoherent 1-D beams in Kerr type media ," Optica Applicata, Vol. 37, No. 3, 243-259, 2007.

21. Melamed, T., "Exact Gaussian beam expansion of time-harmonic electromagnetic waves," Journal of Electromagnetic Waves and Applications, Vol. 23, No. 8-9, 975-986, 2009.

22. Mishra, M. and S. Konar, "High bit rate dense dispersion-managed optical communication systems with distributed amplification," Progress In Electromagnetics Research, Vol. 78, 301-320, 2008.
doi:10.2528/PIER07091305

23. Panda, D. K. K., A. Chakraborty, and S. R. Choudhury, "Analysis of co-channel interference at waveguide joints using multiple cavity modelling technique," Progress In Electromagnetics Research Letters, Vol. 4, 91-98, 2008.
doi:10.2528/PIERL08042704

24. Ramesh, M., D. Packiaraj, and A. T. Kalghatgi, "A compact branch line coupler using defected ground structure," Journal of Electromegnetic Waves and Applications, Vol. 22, No. 2-3, 267-276, 2008.
doi:10.1163/156939308784160659

25. Roy, S., S. K. Bhadra, and G. P. Agrawal, "Perturbation of higher order solitons by fourth-order dispersion in optical fibers," Optics Communications, Vol. 282, No. 18, 3798-3803, 2009.
doi:10.1016/j.optcom.2009.06.018

26. Sarma, A. K., "Soliton switching in a highly nonlinear dual-core holey fiber coupler ," Japanese Journal of Applied Physics, Vol. 47, No. 7A, 5493-5495, 2008.
doi:10.1143/JJAP.47.5493

27. Sarma, A. K., "Self-switching of solitons in an AIGaAs nanowire coupler ," Applied Optics, Vol. 48, No. 27, 5067-5071, 2009.
doi:10.1364/AO.48.005067

28. Sarma, A. K., "Dark soliton switching in an NLDC in the presence of higher-order perturbative effects," Optics and Laser Technology, Vol. 41, No. 3, 247-250, 2009.
doi:10.1016/j.optlastec.2008.06.008

29. Sarma, A. K., "A comparitive study of soliton switching in two and three core coupler with TOD and IMD," Optik, Vol. 120, No. 8, 390-394, 2009.

30. Shahoei, H., H. Ghafoori-Fard, and A. Rostami, "A novel design methodology of multi-clad single mode optical fiber for broadband optical networks," Progress In Electromagnetics Research, Vol. 80, 253-275, 2008.
doi:10.2528/PIER07111003

31. Shwetanshumala, S., "Temporal solitons in nonlinear media modeled by modi¯ed complex Ginzburg Landau equation under collective variable approach ," International Journal of Theoretical Physics, Vol. 48, No. 4, 1122-1131, 2009.
doi:10.1007/s10773-008-9885-9

32. Shwetanshumala, S., "Temporal solitons of modified complex Ginzburg-Landau Equation," Progress In Electromagnetic Research Letters, Vol. 3, 17-24, 2008.
doi:10.2528/PIERL08010401

33. Siong, C. C. and P. K. Choudhury, "Propagation characteristics of tapered core helical clad dielectric optical fibers," Journal of Electromagnetic Waves and Applications, Vol. 23, No. 5-6, 663-674, 2009.
doi:10.1163/156939309788019877

34. Srivastava, S. K. and S. P. Ojha, "Photonic band gaps in one-dimensional metallic star waveguide structure," Progress In Electromagnetics Research, Vol. 84, 349-362, 2008.
doi:10.2528/PIER08080501

35. Topkara, E., D. Milovic, A. K. Sarma, F. Majid, and A. Biswas, "A study of optical solitons with Kerr and power law nonlinearities by He's variational principle," Journal of European Optical Society, Vol. 4, 09050, 2009.

36. Topkara, E., D. Milovic, A. K. Sarma, E. Zerrad, and A. Biswas, "Optical solitons with non-Kerr law nonlinearity and inter-modal dispersion with time-dependent coefficients ," Communications in Nonlinear Science and Numerical Simulation.

37. Tripathi, R., R. Gangwar, and N. Singh, "Reduction of crosstalk in wavelength division multiplexed fiber optic communication systems," Progress In Electromagnetics Research, Vol. 77, 367-378, 2007.
doi:10.2528/PIER07081002

38. Wang, Y.-L., W. Ren, and K. Li, "Exact transient field of a horizontal electric dipole excited by a Gaussian pulse on the surface of one dimensionally anisotropic medium ," Progress In Electromagnetics Research B, Vol. 8, 307-318, 2008.
doi:10.2528/PIERB08062005

39. Wazwaz, A. M., "Exact solutions for the fourth order nonlinear Schrodinger equations with cubic and power law nonlinearities," Mathematical and Computer Modelling, Vol. 43, No. 7-8, 802-808, 2006.
doi:10.1016/j.mcm.2005.08.010

40. Wazwaz, A. M., "A study on linear and nonlinear Schrodinger equations by the variational iteration method," Chaos, Solitons Chaos, Solitons, Vol. 37, No. 4, 1136-1142, 2008.
doi:10.1016/j.chaos.2006.10.009