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1. INTRODUCTION

Optical Solitons is one of the major areas of research in the field of
Nonlinear Optics. This area of research has made remarkable progress
in the past few decades. One of the most important aspects that
is studied in this area is the issue of integrability of the governing
equation. There are various methods that are available that are used
to carry out the integration of these governing equations. Some of
these techniques are G′/G method, tanh-coth method, F -expansion
method, exponential function method, Lie symmetry approach and
many others [1–40]. These techniques lead to the integration of the
governing equation although the Painleve test of integrability will
indicate that the equations are not integrable.

The governing equation is the Nonlinear Schrödinger’s equation
(NLSE), that governs the propagation of solitons through optical fibers,
through trans-continental and trans-oceanic distances [6, 8]. The NLSE
falls under the category of nonlinear evolution equations in Partial
Differential Equations. In this paper, one such method will be used to
carry out the integration of the perturbed NLSE. This is called He’s
variational principle (HVP).

It needs to be noted that this principle was already applied
to study optical solitons with Raman scattering, self-steepening,
nonlinear dispersion as well as intermodal dispersion terms [17, 35].
Subsequently, this principle was applied to study the same
perturbation terms but with full nonlinearity, where the nonlinear
terms are generalized to an arbitrary exponent [35]. In this paper,
HVP will be used to study optical soliton perturbation with higher
order dispersion terms.

2. MATHEMATICAL ANALYSIS

The dimensionless form of the NLSE in a non-Kerr law media is given
by [16]

iqt + aqxx + bF
(|q|2) q = 0, (1)

where x and t represents the spatial and temporal variables
respectively. The first term is the evolution term, The second term is
the group velocity dispersion and the third term is the nonlinear term
where the function F dictates the type of nonlinearity in question.
The dependent variable q represents the wave profile and is a complex
valued function. Solitons are the outcome of a delicate balance between
dispersion and nonlinearity.

In (1), F is a real-valued algebraic nonlinear function and it is
necessary to have the smoothness of the complex function F

(|q|2) q :
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C 7→ C. Considering the complex plane C as a two-dimensional linear
space R2, the function F

(|q|2) q is k times continuously differentiable,
so that [15–17]

F
(|q|2) q ∈

∞⋃

m,n=1

Ck
(
(−n, n)× (−m, m);R2

)
. (2)

2.1. Perturbation Terms

The perturbed NLSE that is going to be studied in this paper is given
by

iqt + aqxx + bF
(|q|2) q = −iγqxxx + σqxxxx + ψqxxxxxx (3)

Here, in (3), γ, σ and ψ represent the third, fourth and sixth order
dispersion terms respectively. It is known that the NLSE, as given
by (1), does not give correct prediction for pulse widths smaller than
1 picosecond. For example, in solid state solitary lasers, where pulses
as short as 10 femtoseconds are generated, the approximation breaks
down. Thus, quasi-monochromaticity is no longer valid and so higher
order dispersion terms creep in. If the group velocity dispersion
is close to zero, one needs to consider the third and higher order
dispersion for performance enhancement along trans-oceanic and trans-
continental distances. Also, for short pulse widths where group velocity
dispersion changes, within the spectral bandwidth of the signal cannot
be neglected, one needs to take into account the presence of higher
order dispersion terms. This reasoning leads to the inclusion of the
fourth and sixth order dispersion terms in addition to the third order
dispersion terms [16, 17]. The effect of third and fourth order dispersion
are simultaneously present in many practical cases. Roy et al. [25]
pointed out that when the ratio of the third and fourth order dispersion
is fixed to a certain value (e.g., γ/σ = 10), both of these perturbation
terms contribute. In these situations the higher order dispersion terms
have a pronounced effect especially for applications involving ultra-
broadband optical source [25].

In this paper, (3) is going to be studied via HVP, for Kerr and
power law nonlinearity. It needs to be noted that the NLSE has been
studied with third and fourth order dispersions before. In fact, for the
case of third order dispersion only, in a Kerr law medium, Equation (3)
has been integrated by the aid of Lie symmetries [5, 6]. It must be
noted that for the case of fourth order dispersion there has only been
numerical studies for this problem [2]. In the case of the sixth order
dispersion, it is only the application of soliton perturbation theory
that had been achieved in 2008 [16]. This equation with sixth order
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dispersion has not been studied from the integration point of view,
until now. In fact, Equation (3), with a combination of all higher order
dispersion terms both for Kerr and power law nonlinearities, is being
integrated, by the aid of HVP, for the first time in this paper. Although
Lie symmetry approach can be applied to integrate (3), at least for the
Kerr law case, HVP method is immensely simpler as compared to that
of Lie symmetry.

3. HE’S VARIATIONAL PRINCIPLE

In this section, HVP will be introduced. Subsequently, it will be
applied to carry out the integration of (3) for Kerr and power laws
of nonlinearity for F .

The starting point is the solitary wave ansatz that is given by

q(x, t) = g(s)eiφ, (4)
where g(s) represents the shape of the pulse and

s = x− vt, (5)
φ = −κx + ωt + θ. (6)

Here, v is the velocity of the soliton, κ is the frequency while ω is the
soliton wave number and θ is the phase constant. Substituting this
ansatz into (3) and decomposing into real and imaginary parts yields
the following pair of relations, respectively

P1g − bgF
(
g2

)− P2g
′′ + P3g

(iv) + ψg(vi) = 0 (7)

Q1g −Q2g
′′ + Q3g

(iv) = 0 (8)

where the notations g′ = dg/ds, g′′ = d2g/ds2, g(iv) = d4g/ds4 and
g(vi) = d6g/ds6 are used. Here, in (7) and (8),

P1 = ω + aκ2 + γκ3 + σκ4 − ψκ6 (9)
P2 = a + 3γκ + 6σκ2 − 15ψκ4 (10)
P3 = σ − 15ψκ2 (11)

and
Q1 = v + 2aκ + 3γκ2 + 4σκ3 − 6ψκ5 (12)
Q2 = γ + 4σκ− 20ψκ3 (13)
Q3 = −6ψκ (14)

Integration of (8) yields

g(s) = exp



−s

[
Q2 −

√
Q2

2 − 4Q1Q3

2Q3

] 1
2



 (15)
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that leads to the velocity (v) of the soliton.
Now, multiplying both sides of the real part Equation (7), by g′

and integrating yields

P1g
2 − 2bgF

(
g2

)− P2

(
g′

)2 − P3

(
g′′

)2 + ψ
(
g′′′

)2 = K (16)

where K is a constant and g′′′ = d3g/ds3. The stationary integral J is
then defined as

J =
∫ ∞

−∞
Kds=

∫ ∞

−∞

[
P1g

2−2bgF
(
g2

)−P2

(
g′

)2−P3

(
g′′

)2+ψ
(
g′′′

)2
]
ds

(17)
Finally, the 1-soliton solution ansatz, given by

g(s) = Af

[
1

cosh(Bs)

]
, (18)

is substituted into (17). Here, in (18), the parameters A and B
represent the amplitude and inverse width of the soliton respectively,
and the functional f depends on whether the nonlinear function F
is Kerr or power. HVP states that the parameters A and B are
determined from the solution of the equations [17, 32, 35]

∂J

∂A
= 0 (19)

and
∂J

∂B
= 0. (20)

The parameters A and B will now be determined for the following
cases of nonlinearity in the following subsections. Finally, the velocity
v of the soliton can be obtained after substituting (18) in the left hand
side of (15) and then solving (15) for v which is located in Q1.

Now, to comment that this method is called semi-inverse
variational principle it is J. H. He who first coined the terminology,
for this method, in his Ph.D. thesis in Mechanical Engineering from
Shanghai University in 1997 and this method was later published in
2004 [13]. Since that point onwards, this method is commonly referred
to as He’s semi-inverse variational principle.

3.1. Kerr Law

The Kerr law of nonlinearity originates from the fact that a light
wave in an optical fiber faces nonlinear responses from non-harmonic
motion of electrons bound in molecules, caused by an external electric
field. Even though the nonlinear responses are extremely weak, their
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effects appear in various ways over long distance of propagation that is
measured in terms of light wavelength. The origin of nonlinear response
is related to the non-harmonic motion of bound electrons under the
influence of an applied field. As a result the induced polarization is
not linear in the electric field, but involves higher order terms in electric
field amplitude [16, 17, 35, 36].

In the case of Kerr law nonlinearity where F (u) = u, the perturbed
NLSE is given by

iqt + aqxx + b|q|2q = −iγqxxx + σqxxxx + ψqxxxxxx (21)

and therefore (7) reduces to

P1g − bg3 − P2g
′′ + P3g

(iv) + ψg(vi) = 0 (22)

Thus, the stationary integral, from (17), is given by

J =
∫ ∞

−∞

[
P1g

2 − b

2
g4 − P2

(
dg

ds

)2

− P3

(
d2g

ds2

)2

+ ψ

(
d3g

ds3

)2
]

ds(23)

For Kerr law nonlinearity, the appropriate form of the soliton is given
by

g(s) =
A

cosh(Bs)
(24)

and so J , from (23), simplifies to

J = 2P1
A2

B
− 2b

3
A4

B
− 2P2

3
A2B − 14P3

15
A2B3 +

62ψ

21
A2B5 (25)

The relations (19) and (20) gives the the relation between the soliton
amplitude (A) and the inverse with (B) as

A =
[
155ψB6 − 49P3B

4 − 35P2B
2 + 105P1

70b

] 1
2

(26)

where the inverse width B is obtained from the algebraic equation

1705ψB6 − 441P3B
4 − 105P2B

2 − 105P1 = 0 (27)

whose solution is given by Cardano’s method as

B=

[(
− 3176523P 2

3

495647765ψ3
+

3087P2P3

1162810ψ2
+

21P1

682ψ
+

√
D1

) 1
3

+
(
− 3176523P 2

3

495647765ψ3
+

3087P2P3

1162810ψ2
+

21P1

682ψ
−

√
D1

) 1
3

+
147P3

1705ψ

] 1
2

(28)
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with the discriminant D1 given by

D1 = −
(

21609P 2
3

2907025ψ2
+

7P2

341

)3

+
(

3176523P 2
3

4956477625ψ3
− 3087P2P3

1162810ψ2
− 21P1

682ψ

)2

(29)

Finally, the soliton amplitude A can be computed from (26).
The following figures show the numerical simulation of the optical

soliton with Kerr law nonlinearity where the perturbation parameters
are chosen as γ = 0.014, σ = 0.012 and ψ = 0.001. Figure 1(a)
shows the comparison between the solutions between the variationally
obtained solution and asymptotically obtained solution.

3.2. Power Law

This law of nonlinearity arises in nonlinear plasmas that solves the
problem of small K-condensation in weak turbulence theory. It also
arises in the context of nonlinear optics. Physically, various materials,
including semiconductors, exhibit power law nonlinearities. Moreover
highly nonlinear materials, such as semiconducter-doped glasses, have
non-Kerr nonlinearity. Therefore, it is worthwhile investigating some
cases where the increase in index is proportional to the field raised to
the power different from two. When dealing with very broad optical
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Figure 1. (a) Optical soliton with Kerr law nonlinearity a) numerical
simulation of Equation (18), b) from He’s variational approach, where
the perturbation parameters are t = 5, γ = 0.014, σ = 0.012 and
ψ = 0.001. (b) Numerical simulation of the optical soliton with Kerr
law nonlinearity and parameters: a = 0.2, b = 1.
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spectra (ultrashort optical pulses), dispersion up to fourth or even fifth
and sixth order must be taken into account [2, 16, 17, 35, 36].

For the case of power law nonlinearity, where F (u) = un, the
perturbed NLSE is given by

iqt + aqxx + b|q|2nq = −iγqxxx + σqxxxx + ψqxxxxxx (30)
In (30), the parameter n dictates the power law parameter. The
special case with n = 1 reduces to Kerr law nonlinearity. For power
law nonlinearity, it is necessary to have 0 < n < 2 to prevent
wave collapse [1, 4, 5] and, in particular, n 6= 2 to avoid self-focusing
singularity [4]. Thus, (7) reduces to

P1g − bg2n+1 − P2g
′′ + P3g

(iv) + ψg(vi) = 0 (31)
In this case, therefore, the stationary integral (17) is given by

J =
∫ ∞

−∞

[
P1g

2− b

n + 1
g2n+2−P2

(
dg

ds

)2

−P3

(
d2g

ds2

)2

+ψ

(
d3g

ds3

)2
]
ds

(32)
For power law nonlinearity, the hypothesis

g(s) =
A

cosh
1
n (Bs)

(33)

simplifies J to

J =

[
P1

A2

B
− 2b

(n + 1)(n + 2)
A2n+2

B
− P2

A2B

n(n + 2)

+P3G1(n)A2B3 + ψG2(n)A2B5

]
Γ

(
1
n

)
Γ

(
1
2

)

Γ
(

1
n + 1

2

) (34)

where

G1(n) =
4n + 3

n2(n + 2)(3n + 2)
(35)

and

G2(n) =
1

n6(n + 2)(3n + 2)(5n + 2)

{
n(3n + 2)(5n + 2)

+4(n + 1)3(2n + 1)2(5n + 2)− 8(n + 1)3(2n + 1)3

−4(n + 1)(2n + 1)(3n + 2)(5n + 2) + 8(n + 1)2(2n + 1)(5n + 2)
}

(36)

The relations (19) and (20) when applied to (34) yields the amplitude
of the soliton as

A=
[
n(n+2)P1−P2B

2+n(n+2)G1(n)P3B
4+n(n+2)G2(n)ψB6

2nb

] 1
2n

(37)
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where the inverse width, that is obtained from the algebraic equation

n(5n + 6)G2(n)ψB6 + n(3n + 4)G1(n)P3B
4 + P2B

2 − n2P1 = 0 (38)

whose solution is given by

B =

[{
− 1

27

(
(3n + 4)G1(n)P3

(5n + 6)G2(n)ψ

)3

+
(3n + 4)G1(n)P2P3

6n(5n + 6)2G2
2(n)ψ2

+
nP1

2(5n + 6)G2(n)ψ
+

√
D2

} 1
3

+

{
− 1

27

(
(3n + 4)G1(n)P3

(5n + 6)G2(n)ψ

)3

+
(3n + 4)G1(n)P2P3

6n(5n + 6)2G2
2(n)ψ2

+
nP1

2(5n + 6)G2(n)ψ
−

√
D2

} 1
3

− (3n + 4)G1(n)P3

3(5n + 6)G2(n)ψ

] 1
2

(39)

and the discriminant D2 is given by

D2 = −
[

1
9

{
(3n+4)G1(n)P3

(5n+6)G2(n)ψ

}2

− P2

3n(5n+6)G2(n)ψ

]3

+

[
1
27

{
(3n+4)G1(n)P3

(5n+6)G2(n)ψ

}3

− (3n+4)G1(n)P2P3

6n(5n+6)2G2
2(n)ψ2

− nP1

2(5n+6)G2(n)ψ

]2

(40)
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Figure 2. (a) Optical soliton with power law nonlinearity n = 1/2, a)
numerical simulation of Eq. (18), b) from He’s variational approach,
where the perturbation parameters are t = 5, γ = 0.014, σ = 0.012
and ψ = 0.001. (b) Numerical simulation of the optical soliton with
power law nonlinearity where n = 1/2, a = 0.5, b = 1.
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Subsequently, the soliton amplitude A is obtained from (37).
The following figure shows the numerical simulation of the

optical soliton with power law nonlinearity where n = 1/2 and the
perturbation parameters are chosen as γ = 0.014, σ = 0.012 and
ψ = 0.001. Figure 2(a), shows the comparison between the solutions
between the variationally obtained solution and asymptotically
obtained solution.

4. CONCLUSION

In this paper, the HVP is used to carry out the integration of the NLSE
with higher order dispersion terms. Both, Kerr law and power law
nonlinearities are considered. After obtaining the 1-soliton solutions
with these two kind of nonlinearities, the parameter domains are also
identified for the soliton solution to exist. These results are from purely
analytical standpoint and thus a closed form soliton solution has been
obtained. The numerical simulations are also obtained.
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