Vol. 12
Latest Volume
All Volumes
PIERM 130 [2024] PIERM 129 [2024] PIERM 128 [2024] PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2010-04-12
A New Hybrid mm /Compact 2-d Fdfd Method for Rectangular Ridged Waveguide Discontinuities
By
Progress In Electromagnetics Research M, Vol. 12, 29-38, 2010
Abstract
A hybrid mode-matching/compact 2-D finite-difference frequency-domain (MM/compact 2-D FDFD) method is proposed for the analysis of rectangular ridged waveguide discontinuities. In order to apply MM technique, mode spectrum of the ridged waveguide is determined by an improved compact 2-D FDFD method with only two transverse field components at the cutoff frequencies which lead to two independent sets of real symmetric eigenvalue problems for TE and TM modes. Solving these two separate eigenvalue equations, cutoff wave numbers and discrete mode field functions can be obtained respectively from eigenvalues and eigenvectors. Finally, the generalized scattering matrix (GSM) of the rectangular-ridged waveguide step discontinuity can be easily calculated through the transverse field matching procedure. The method is demonstrated at the examples of two waveguide structures, and results are shown to be in excellent agreement with those by the commercial CAD software HFSS.
Citation
Wei Zhao, Yong-Jiu Zhao, Hong-Wei Deng, Duanwei Zhang, and Bing Liu, "A New Hybrid mm /Compact 2-d Fdfd Method for Rectangular Ridged Waveguide Discontinuities," Progress In Electromagnetics Research M, Vol. 12, 29-38, 2010.
doi:10.2528/PIERM10011902
References

1. Kirilenko, A., L. Rud, V. Tkachenko, and D. Kulik, "Evanescent-mode ridged waveguide bandpass filters with improved performance," IEEE Transactions on Microwave Theory and Techniques, Vol. 50, 1324-1327, 2002.
doi:10.1109/22.999146

2. Shen, T. and K. A. Zaki, "Length reduction of evanescent-mode ridge waveguide bandpass filters," Journal of Electromagnetic Waves and Applications, Vol. 17, No. 6, 879-880, 2003.
doi:10.1163/156939303322503475

3. Mallahzadeh, A. R. and A. Imani, "Double-ridged antenna for wideband applications," Progress In Electromagnetics Research, Vol. 91, 273-285, 2009.
doi:10.2528/PIER09022104

4. Goussetis, G. and D. Budimir, "Compact ridged waveguide filters with improved stopband performance," IEEE MTT-S International Microwave Symposium Digest, Vol. 2, 953-956, 2003.

5. Gharib, M., E. Mehrshahi, and M. Thyarani, "An accurate design of E-septum waveguide filters with improved stopband, based on mode matching method," Journal of Electromagnetic Waves and Applications, Vol. 22, No. 14-15, 2003-2013, 2008.
doi:10.1163/156939308787537991

6. Manuilov, M. B., K. V. Kobrin, G. P. Sinyavsky, and O. S. Labunko, "Full wave hybrid technique for CAD of passive waveguide components with complex cross section components with complex cross section ," PIERS Online, Vol. 5, 526-530, 2009.

7. Yu, S. Y. and J. Bornemann, "Classical eigenvalue mode-spectrum analysis of multiple-ridged rectangular and circular waveguides for the design of narrowband waveguide components," International Journal of Numerical Modelling: Electronic Networks, Devices and Fields , Vol. 22, 395-410, 2009.
doi:10.1002/jnm.716

8. Bornemann, J. and F. Arndt, "Transverse resonance, standing wave, and resonator formulations of the ridge waveguide eigenvalue problem and its application to the design of E-plane finned waveguide filters," IEEE Transactions on Microwave Theory and Techniques, Vol. 38, 1104-1113, 1990.
doi:10.1109/22.57337

9. Arndt, F., "Advanced hybrid EM CAD approach for fast design solutions," IEEE Microwave Magazine, Vol. 9, 162-170, 2008.
doi:10.1109/MMM.2008.929619

10. Arndt, F., J. Brandt, V. Catina, J. Ritter, I. Rullhusen, J. Dauelsberg, U. Hilgefort, and W. Wessel, "Fast CAD and optimization of waveguide components and aperture antennas by hybrid MM/FE/MoM/FD methods --- State-of-the-art and recent advances," IEEE Transactions on Microwave Theory and Techniques, Vol. 52, 292-305, 2004.
doi:10.1109/TMTT.2003.820890

11. Beyer, R. and F. Arndt, "Efficient modal analysis of waveguide filters including the orthogonal mode coupling elements by an MM/FE method ," IEEE Microwave Guided Wave Letters, Vol. 5, 9-11, 1995.
doi:10.1109/75.382376

12. Arndt, F. and J. Brandt, "Fast hybrid MM/FE CAD tool for the design and optimization of advanced evanescent mode filters," MIOP Microwaves and Optronics Symp. Dig., 1491-1494, 2001.

13. Rong, Y. and K. A. Zaki, "Characteristics of generalized rectangular and circular ridge waveguides," IEEE Transactions on Microwave Theory and Techniques, Vol. 48, 258-265, 2000.
doi:10.1109/22.821772

14. Arndt, F. and J. Brandt, "Fast hybrid CAD tool for the optimization of ridged waveguide LTCC filters and diplexers," Asia-Pacific Microwave Conference, 2407-2410, 2005.

15. Niu, J. X., Q. Zhang, X. L. Zhou, and Z. Y. Shan, "A compact 2-D finite-difference frequency-domain method for dispersion char-acteristics analysis of trapezoidal-ridge waveguides," International Journal of Infrared and Millimeter Waves, Vol. 29, 519-526, 2008.
doi:10.1007/s10762-008-9345-x

16. Zhao, Y. J., K. L. Wu, and K. K. M. Cheng, "A compact 2-D full-wave finite-difference frequency-domain method for general guided wave structures," IEEE Transactions on Microwave Theory and Techniques, Vol. 50, 1844-1848, 2002.
doi:10.1109/TMTT.2002.800447

17. Xu, F. and K. Wu, "A compact 2-D finite-difference frequency-domain method combined with implicitly restarted Arnoldi technique," IEEE Transactions on Microwave Theory and Techniques, Vol. 57, 1129-1135, 2009.
doi:10.1109/TMTT.2009.2017344

18. Zhao, W., H. W. Deng, and Y. J. Zhao, "Application of 4-component compact 2-D FDFD method in analysis of lossy circular metal waveguide," Journal of Electromagnetic Waves and Applications, Vol. 22, No. 17-18, 2297-2308, 2008.
doi:10.1163/156939308787543930