Vol. 13
Latest Volume
All Volumes
PIERL 123 [2025] PIERL 122 [2024] PIERL 121 [2024] PIERL 120 [2024] PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2010-02-22
A New Miniaturized Fractal Frequency Selective Surface with Excellent Angular Stability
By
Progress In Electromagnetics Research Letters, Vol. 13, 131-138, 2010
Abstract
A new miniaturized bandpass fractal frequency selective surface (FSS) with excellent angular stability performa nce is proposed. The minia turization has been achieved by scheming out a symmetric fractal pattern of continuous slots from the surface of a square-shaped patch, in which each periodic cell consists of incurved slot resonator for reducing the cell size. Reduction in FSS size of up to 74% with respect to the conventional square loop aperture FSS operating at the same frequency of 3.3 GHz is obtained. Furthermore, results show excellent angular stability for both vertica land horizontal polarization at different incidence angles because of its fractal configuration. A prototype is fabricated and the FSS measurement, and simulation results are presented and discussed.
Citation
Jin-Yuan Xue, Shu-Xi Gong, Peng-Fei Zhang, Wei Wang, and Fei-Fei Zhang, "A New Miniaturized Fractal Frequency Selective Surface with Excellent Angular Stability," Progress In Electromagnetics Research Letters, Vol. 13, 131-138, 2010.
doi:10.2528/PIERL10010804
References

1. Munk, B. A., Frequency Selective Surfaces: Theory and Design, Wiley, 2000.
doi:10.1002/0471723770

2. Lee, S. W., et al. "Design for the MDRSS tri band reflector antenna," 1991 IEEE AP-S International Symposium, 666-669, Ontario, Canada, 1991.

3. Ueno, K., et al. "Characteristics of FSS for a multi-band communication satellite," 1991 IEEE AP-S International Symposium, Ontario, Canada, 1991.

4. Lee, D. H., Y. J. Lee, J. Yeo, R. Mittra, and W. S. Park, "Directivity enhancement of circular polarized patch antenna using ring-shaped frequency selective surface superstrate," Microwave Opt. Technol. Lett., Vol. 49, 2007.

5. Liu, Z. G., W. X. Zhang, D. L. Fu, Y. Y. Gu, and Z. C. Ge, "Broadband faby-perot resonator printed antennas using FSS superstrate with dissimilar size," Microwave Opt. Technol. Lett., Vol. 50, 2008.
doi:10.1002/mop.23168

6. Kiani, G. I., A. R. Weily, and K. P. Esselle, "A novel absorb/transmit FSS for secure indoor wireless networks with reduced multipath fading," IEEE Microw. Wireless Compon. Lett., Vol. 16, 378-380, 2006.
doi:10.1109/LMWC.2006.875589

7. Kiani, G. I., K. L. Ford, K. P. Esselle, A. R. Weily, and C. J. Panagamuwa, "Oblique incidence performance of a novel frequency selective surface absorber," IEEE Trans. Antennas Propag., Vol. 55, 2931-2934, 2007.
doi:10.1109/TAP.2007.905980

8. Kiani, G. I., K. P. Esselle, K. L. Ford, A. R. Weily, and C. Panagamuwa, "Angle and polarization-independent bandstop frequency selective surface for indoor wireless systems," Microwave Opt. Technol. Lett., Vol. 50, 2315-2317, 2008.
doi:10.1002/mop.23654

9. Xu, R. R., Z. Y. Zong, G. Yang, and W. Wu, "Loaded frequency selective surfaces using substrate integrated waveguide technology," Microwave Opt. Technol. Lett., Vol. 50, 3149-3152, 2008.
doi:10.1002/mop.23945

10. Raspopoulos, M. and S. Stavrou, "Frequency selective surfaces on building materials-air gap impact," Electronics Letters, Vol. 43, No. 13, June 21, 2007.

11. Huang, J., T.-K. Wu, and S.-W. Lee, "Tri-band frequency selective surface with circular element," IEEE Trans. Antennas Propag., Vol. 42, 166-175, 1994.
doi:10.1109/8.277210