Vol. 11
Latest Volume
All Volumes
PIERM 130 [2024] PIERM 129 [2024] PIERM 128 [2024] PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2010-02-24
The Numerical Analyses of the Planar Rectangular Waveguide Having Alterable Single Mode's Working Band Width
By
Progress In Electromagnetics Research M, Vol. 11, 153-164, 2010
Abstract
By inserting a dielectric layer, covered by a grounded metal plane, into a hollow rectangular waveguide (HRWG), a planar rectangular waveguide (PRWG) is structured. It is a new candidate solution for both MMIC and hybrid planar RF circuit applications. An intensive numerical analysis of the PRWG is conducted by a 2-D FDTD method. The propagation characteristics of the PRWG with different physical dimensions and electrical parameters are presented. This analysis shows that the PRWG can give an alterable single mode working bandwidth for dominant mode compared with the HRWG, and the size of the transverse section of the PRWG is smaller than the HRWG under the same cutoff frequency of dominant mode.
Citation
Zhi-Yuan Yu, "The Numerical Analyses of the Planar Rectangular Waveguide Having Alterable Single Mode's Working Band Width," Progress In Electromagnetics Research M, Vol. 11, 153-164, 2010.
doi:10.2528/PIERM10010710
References

1. Bohorquez, J. C., H. A. F. Pedraza, I. C. H. Pinzon, J. A. Castiblanco, N. Pena, and H. F. Guarnizo, "Planar substrate integrated waveguide cavity-backed antenna," IEEE Antennas and Wireless Propagation Letters, Vol. 8, 1139-1142, 2009.
doi:10.1109/LAWP.2009.2034399

2. Wu, L.-S., X.-L. Zhou, Q.-F. Wei, and W.-Y. Yin, "An extended doublet substrate integrated waveguide (SIW) bandpass filter with a complementary split ring resonator (CSRR)," IEEE Microwave and Wireless Components Letters, Vol. 19, No. 12, 777-779, Dec. 2009.
doi:10.1109/LMWC.2009.2034034

3. Wu, L.-S., X.-L. Zhou, and W.-Y. Yin, "Evanescent-mode bandpass filters using folded and ridge substrate integrated waveguides (SIWs)," IEEE Microwave and Wireless Components Letters, Vol. 19, No. 3, 161-163, Mar. 2009.
doi:10.1109/LMWC.2009.2013739

4. Liu, B., W. Hong, Y. Zhang, J. X. Chen, and K. Wu, "Half-mode ubstrate integrated waveguide (HMSIW) double-slot coupler," Electron. Lett., Vol. 43, No. 2, Jan. 18, 2007.

5. Wu, K.-L. and Y. Huang, "LTCC technology and its applications in high frequency front end modules," Proceedings of 2003 6th International Symposium on Antennas, Propagation and EM Theory, 730-734, Oct. 28-Nov. 1, 2003.

6. Lecheminoux, L. and N. Gosselin, "Advanced design, technology & manufacturing for high volume and low cost production," IEEE/CPMT/SEMI 28th International Electronics Manufacturing Technology Symposium, 2003. IEMT 2003, 255-260, Jul. 16-18, 2003.

7. Mulln, T., W. Ehrhardt, K.-H. Drue, A. Gross, and L. Abahmane, "Optical-fluidic sensors in LTCC-technology," International Students and Young Scientists Workshop on Photonics and Microsystems, 54-57, Jul. 8-10, 2007.

8. Yu, Z. Y., X. Yang, and Q. F. Shi, "A new kind waveguide with a plan structure," International Conference on Microwave and Millimeter Wave Technology, 2008. ICMMT 2008, Vol. 1, 311-314, 2Apr. 21-24, 008.

9. Xiao, S. and R. Vahldieck, "An efficient 2-D FDTD algorithm using real variables," IEEE Microwave Guided Wave Lett., Vol. 3, 127-129, May 1993.
doi:10.1109/75.217204

10. Asi, A. and L. Shafai, "Dispersion analysis of anisotropic inhomogeneous waveguides using compact 2D-FDTD," Electron. Lett., Vol. 28, 1451-1452, Jul. 1992.

11. Zhao, Y.-J., K.-L. Wu, and K.-K. M. Cheng, "A compact 2-D full-wave finite-difference frequency-dominant method for general guided wave structures," IEEE Transactions on Microwave Theory and Techniques, Vol. 50, No. 7, 1844-1848, Jul. 2002.
doi:10.1109/TMTT.2002.800447

12. Hong, I. P. and H. K. Park, "Dispersion characteristics of a unilateral fin-line using 2D FDTD," Electron. Lett., Vol. 32, 1992-1994, Oct. 1996.

13. Yu, Z. Y., "The general numerical method of analysis of waveguides of arbitrary cross section with perfect conducting wall by FDTD and its applications," Journal of Electromagnetic Waves and Applications, Vol. 17, No. 7, 1063-1073, 2003.
doi:10.1163/156939303322519162

14. Yu, Z. Y., "A new method of S-parameter extraction from the FDTD analysis of microstrip circuit discontinuities," Microwave and Optical Technology Letters, Vol. 16, No. 3, 162-163, Oct. 20, 1997.
doi:10.1002/(SICI)1098-2760(19971020)16:3<162::AID-MOP11>3.0.CO;2-7