Vol. 11
Latest Volume
All Volumes
PIERM 130 [2024] PIERM 129 [2024] PIERM 128 [2024] PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2010-02-26
Full-Wave Semiconductor Devices Simulation Using Adi-FDTD Method
By
Progress In Electromagnetics Research M, Vol. 11, 191-202, 2010
Abstract
This paper describes the alternating-direction implicit finite-difference time-domain (ADI-FDTD) method for physical modeling of high-frequency semiconductor devices. The model contains the semiconductor equations in conjunction with the Maxwell's equations which describe the complete behavior of high-frequency active devices. Using ADI approach leads to a significant reduction of the full-wave simulation time. We can reach over 99% reduction in the simulation time by using this technique while still have a good degree of accuracy compared to the conventional approaches. As the first step in the performance investigation, we use the electrons flow equations in the absence of holes and recombination as semiconductor equations in this paper.
Citation
Rashid Mirzavand, Abdolali Abdipour, Gholamreza Moradi, and Masoud Movahhedi, "Full-Wave Semiconductor Devices Simulation Using Adi-FDTD Method," Progress In Electromagnetics Research M, Vol. 11, 191-202, 2010.
doi:10.2528/PIERM10010604
References

1. Kung, F. and H. Chuah, "Modeling of bipolar junction transistor in FDTD simulation of printed circuit board," Progress In Electromagnetics Research, Vol. 36, 179-192, 2002.
doi:10.2528/PIER02013001

2. Afrooz, K., A. Abdipour, A. Tavakoli, and M. Movahhedi, "Time domain analysis of active transmission line using FDTD technique (application to microwave/MM-wave transistors)," Progress In Electromagnetics Research, Vol. 77, 309-328, 2007.
doi:10.2528/PIER07081401

3. Alsunaidi, M. A., S. M. S. Imtiaz, and S. M. El-Ghazaly, "Electromagnetic wave effects on microwave transistors using a full-wave time-domain model," IEEE Trans. Microw. Theory Tech., Vol. 44, No. 6, 799-808, Jun. 1996.
doi:10.1109/22.506437

4. Feng, Y. K. and A. Hintz, "Simulation of sub-micrometer GaAs MESFET's using a full dynamic transport model," IEEE Trans. Electron Devices, Vol. 35, 1419-1431, Sep. 1988.
doi:10.1109/16.2574

5. Li, Z.-M., "Two-dimensional numerical simulation of semiconductor lasers," Progress In Electromagnetics Research, Vol. 11, 301-344, 1995.

6. Liu, Q. H., C. Cheng, and H. Z. Massoud, "The spectral grid method: A novel fast SchrÄodinger-equation solver for semiconductor nanodevice simulation," IEEE Trans. Computeraided Design Integ. Circuit Sys., Vol. 23, No. 8, Aug. 2004.

7. Cheng, C., J.-H. Lee, K. H. Lim, H. Z. Massoud, and Q. H. Liu, "3D quantum transport solver based on the perfectly matched layer and spectral element methods for the simulation of semiconductor nanodevices," Journal of Comput. Physics, Vol. 227, No. 1, 455-471, Nov. 2007.
doi:10.1016/j.jcp.2007.07.028

8. Namiki, T., "3-D ADI-FDTD method --- Unconditionally stable time-domain algorithm for solving full vector Maxwell's equations," IEEE Trans. Microw. Theory Tech., Vol. 48, No. 10, 1743-1748, Oct. 2000.
doi:10.1109/22.873904

9. Zheng, F., Z. Chen, and J. Zhang, "Toward the development of a three-dimensional unconditionally stable finite-difference time-domain method ," IEEE Trans. Microw. Theory Tech., Vol. 48, No. 9, 1550-1558, Sep. 2000.
doi:10.1109/22.869007

10. Kong, K. B., S. O. Park, and J. S. Kim, "Stability and numerical dispersion of 3-D Simplified sampling biorthogonal adi method," Journal of Electromagnetic Waves and Applications, Vol. 24, No. 1, 1-12, 2010.
doi:10.1163/156939310790322136

11. Rouf, H. K., F. Costen, S. G. Garcia, and S. Fujino, "On the solution of 3-D Frequency dependent crank-nicolson FDTD scheme," Journal of Electromagnetic Waves and Applications, Vol. 23, No. 16, 2163-2175, 2009.
doi:10.1163/156939309790109261

12. Movahhedi, M. and A. Abdipour, "Efficient numerical methods for simulation of high-frequency active devices," IEEE Trans. Microw. Theory Tech., Vol. 54, No. 6, 2636-2645, Jun. 2006.
doi:10.1109/TMTT.2006.872937

13. Cangellaris, A. C. and R. Lee, "On the accuracy of numerical wave simulations based on finite methods," Journal of Electromagnetic Waves and Applications, Vol. 6, No. 12, 1635-1653, 1992.
doi:10.1163/156939392X00779

14. Castillo, S. and S. Omick, "Suppression of dispersion in FDTD solutions of Maxwell's equations," Journal of Electromagnetic Waves and Applications, Vol. 8, No. 9-10, 1193-1221, 1994.
doi:10.1163/156939394X01000

15. Garcia, S. G., F. Costen, M. F. Pantojal, A. Brown, and A. R. Bretones, "Open issues in unconditionally stable schemes," Progress In Electromagnetics Research Symposium Abstracts, Vol. 841, Beijing, 2009.

16. Kung, F. and H. T. Chuah, "Stability of classical finite-difference time-domain (FDTD) formulation with nonlinear elements --- A new perspective," Journal of Electromagnetic Waves and Applications, Vol. 17, No. 9, 1313-1314, 2003.
doi:10.1163/156939303322520061

17. Liang, F. and G. Wang, "Fourth-order locally one-dimensional FDTD method," Journal of Electromagnetic Waves and Applications, Vol. 22, No. 14-15, 2035-2043, 2008.
doi:10.1163/156939308787538017

18. Zhou, X. and H. Tan, "Monte Carlo formulation of field-dependent mobility for AIxGa1-xAs," Solid-Sate Electronics, Vol. 38, 567-569, 1994.

19. Morton, K. W. and D. F. Mayers, Numerical Solution of Partial Differential Equations, 2nd Ed., University Press, 2005.
doi:10.1017/CBO9780511812248

20. Bau III, D. and L. N. Trefethen, "Numerical linear algebra," Philadelphia: Society for Industrial and Applied Mathematics, 1997.

21. Tomizawa, K., Numerical Simulation of Submicron Semiconductor Devices, Artech House, 1993.

22. Sun, G. and C. Trueman, "A simple method to determine the time-step size to achieve a desired dispersion accuracy in ADI-FDTD," Microw. Optic. Tech. Lett., Vol. 40, No. 6, Mar. 2004.

23. Hussein, Y. A. and S. M. El-Ghazaly, "Extending multiresolution timedomain (MRTD) technique to the simulation of high-frequency active devices," IEEE Trans. Microw. Theory Tech., Vol. 51, No. 7, 1842-1851, Jul. 2003.
doi:10.1109/TMTT.2003.814315