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Abstract—This paper describes the alternating-direction implicit
finite-difference time-domain (ADI-FDTD) method for physical
modeling of high-frequency semiconductor devices. The model
contains the semiconductor equations in conjunction with the
Maxwell’s equations which describe the complete behavior of high-
frequency active devices. Using ADI approach leads to a significant
reduction of the full-wave simulation time. We can reach over
99% reduction in the simulation time by using this technique while
still have a good degree of accuracy compared to the conventional
approaches. As the first step in the performance investigation, we use
the electrons flow equations in the absence of holes and recombination
as semiconductor equations in this paper.

1. INTRODUCTION

By increasing the operating frequency, devices and circuits need more
and more accurate techniques for modeling and simulation [1–3]. If
non-local and hot carrier transport of transistors cannot be ignored,
the simulation requires more accurate model for semiconductor devices.
Many different approaches to the simulation of these devices have
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been developed in the past [3–7]. These techniques are fundamentally
dependent upon the solution of the Poisson equation along with the
basic carrier transport equations. In this paper, the semiconductor
analysis is based on the time-domain drift-diffusion method (DDM) [4]
in conjunction with Maxwell’s equations. The set of DDM equations
contains the Poisson equation and the carrier transport equations,
obtained by splitting the Boltzmann transport equation (BTE)
into its first two moments. The DDM model assumes that the
carrier temperature is equal to the semiconductor lattice temperature.
Therefore, the carrier velocity is dependent on the electric field only. In
comparison to other more rigorous techniques for numerical modeling
of semiconductor devices, the DDM is a relatively simple technique
with better convergence of the algorithm and shorter computational
time. Therefore, it is more suitable for use by a design engineer.
On the other hand, even for simple semiconductor equations, the
simultaneous simulation of these equations and Maxwell’s equations is
very time consuming because of the limitations on the simulation time-
step. In the last decade, a new method, called the alternating-direction
implicit FDTD (ADI-FDTD) method, has been introduced [8, 9] to
solve the Maxwell’s curl equations. This method is an attractive
alternative to the standard FDTD due to its unconditional stability
with moderate computational overhead. The unconditional stability
means that the ADI-FDTD method is free of the Courant-Friedrich-
Levy (CFL) stability restraint, allowing any choice of ∆t for a stable
solution [10, 11]. The ADI-FDTD can be particularly useful for
problems involving devices with fine geometric features that are much
smaller than the wavelengths of interest [12–17]. It is used in the
semiconductor device simulation for only the electromagnetic model
part (Half-ADI scheme). This paper presents an implicit numerical
method to solve the DDM and Maxwell’s equations based on ADI-
FDTD method (Full-ADI scheme). This allows using a larger time-
step size that leads significant CPU time reduction in an acceptable
degree of accuracy.

2. ACTIVE DEVICE MODEL

The active device model used for simulation is based on the moments
of Boltzmann’s transport equations obtained by integration over the
momentum space. Three equations need to be solved together with
Poisson’s equation in order to get the quasi-static characteristics
of the transistor. This system of coupled highly nonlinear partial
differential equations contains current continuity, energy conservation
and momentum conservation equations [4]. The solution of this system
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of partial differential equations represents the complete hydrodynamic
model. Simplified models are obtained neglecting some terms in
momentum equation. One of these simplified models is drift-diffusion
model (DDM). In this paper we simulate MESFET as microwave/mm
transistor that is a unipolar device. For this device, the equations to
be solved in the drift-diffusion model are:
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~E = −∇φ. (4)

where Dn = µnKBT/q, µn(E, Nd) = [µ0 + (vs/E)(E/Es)4]/[1 +
(E/Es)4] have been defined in [18]. In the above equations, φ is the
potential, Nd is the doping profile, nis the electron concentration, and
µn and Dn are the mobility and the diffusion coefficient, respectively.
Equation (1) can be discretized using the carrier concentration ni,j at
t = k as follows:

(φi+1,j − 2φi,j + φi−1,j)/(∆x2) + (φi,j+1 − 2φi,j + φi,j−1)/(∆y2)

= −q(N+
d − nk

i,j)/ε. (5)

To obtain an unconditionally stable solution, the ADI princi-
ple [19] is applied to Equation (2) as follows. The computation of
Equation (2) for the FDTD solution marching from the nth time-
step to the (n+1)th time-step is broken up into two computational
sub-advancements: the advancement from the nth time-step to the
(n+1/2)th time-step and the advancement from the (n+1/2)th time-
step to the (n+1)th time-step. More specifically, the two substeps are
as follows.

Step 1): For the first half-step, i.e., at the (n + 1/2)th
time step, the first partial derivative on the right-hand side (RHS)
of Equation (2), ∂Jx/∂x, is replaced with an implicit difference
approximation of its unknown pivotal values at the (n + 1/2)th time
step, while the second partial derivatives on the RHS, ∂Jy/∂y, is
replaced with an explicit FD approximation in its known values at
the previous nth time step. Using the first-order upwind scheme for
spatial derivatives,

vi
d

dx
[fi] =

{
vi(fi − fi−1)/∆x if vi ≥ 0,
vi(fi+1 − fi)/∆x if vi < 0.

(6)
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yields the following equation,
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Step 2): For the second half time-step, i.e., at (n+1)th time step,
the second term on the RHS, Jy/∂y, is replaced with an implicit FD
approximation of its unknown pivotal values at the (n+1)th time step,
while the first term is replaced with an explicit FD approximation in
its known values at the previous (n+1/2)th time-step. Using the first-
order upwind scheme for spatial derivatives, the following equation cab
be derived,

−
(

dt

2dy2
Dij +

dt

2dy
µij
|Ey|+ Ey

2

)
nk+1

i,j+1

+
(

1 +
dt

dy2
Dij +

dt

2dy
µij |Ey|+ dt

2
µij∇2φ

)
nk+1

i,j

−
(

dt

2dy2
Dij +

dt

2dy
µij
|Ey| − Ey

2

)
nk+1

i,j−1

=
(

dt

2dx2
Dij +

dt

2dx
µij
|Ex|+ Ex

2

)
n

k+1/2
i+1,j

+
(

1− dt

dx2
Dij − dt

2dx
µij |Ex|

)
n

k+1/2
i,j

+
(

dt

2dx2
Dij +

dt

2dx
µij
|Ex| − Ex

2

)
n

k+1/2
i−1,j . (8)



Progress In Electromagnetics Research M, Vol. 11, 2010 195

3. ELECTROMAGNETIC MODEL

The Maxwell’s equations characterize electromagnetic wave propaga-
tion completely which can be written in a matrix form as

DtW = (D1 + D2)W + J. (9)

where
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where ~E is the electric field, ~H is the magnetic field, ~D is the electric
flux density, and ~B is the magnetic flux density. To solve Equation (9),
algorithm of ADI-FDTD introduced by Namiki [8] and Zheng et al. [9]
to eliminate the constraints of the CFL condition in standard FDTD.
To solve Equation (9), it is broken up into two time steps at n + 1/2
and n + 1 as

(I −D1)Wn+1/2 = (I + D2)Wn + 0.5Jn, (10)

(I −D2)Wn+1 = (I + D1)Wn+1/2 + 0.5Jn+1/2. (11)

where J is the current density estimate by (3).

4. COMPUTATIONAL PROCEDURE

The coupling between the two models is established by properly
transforming the physical parameters (e.g., fields and current densities)
from one model to the other. In each time step, the Maxwell’s and
semiconductor equations should be solved sequentially. First, the
Maxwell’s equations are solved for the electric and magnetic field
distributions using the current density obtained in the previous time
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step. Then, the obtained EM fields are used in the semiconductor
equations to find the new current density. This process is repeated for
each time interval [3, 12]. The full-wave analysis procedure includes
the following.

1) Steady-State DC Solution (Initialization): The steady-state dc
solution for electric fields, current densities, and the other transport
parameters are obtained from the semiconductor model by solving
Poisson’s and hydrodynamic transport equations. The device is biased
and the dc parameter distributions (E, n, φ, and Jdc) are obtained by
solving the equations (3)–(5) and (7)–(8), as shown in Figure 1(a).
The system of linear equations (7)–(8) are symmetric and tridiagonal,
and thus cheap to solve by methods like Choleski decomposition [20].
These dc solutions serve as the corresponding initial values inside the
AD for the coupled model.

2) Time-Domain AC Solution: After completing the initializa-
tions, the AC excitation is applied (J = Jdc + Jac). The time-domain
distribution of the EM fields is obtained using Maxwell’s equations.
These EM fields are used by the semiconductor model to update the
current density. More details about AC and DC solutions can be found
in [3]. Figure 1 shows flowchart of the sequence of ADI-FDTD schemes

(a)                                               (b) 

Figure 1. Flowcharts of the sequence of (a) ADI-FDTD scheme
for active device model, (b) Full-wave simulation of a semiconductor
device.
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for full-wave simulation of a semiconductor device contains active de-
vice and electromagnetic models.

5. SIMULATION RESULTS

In order to demonstrate the performance of the proposed approach,
first the GaAs MESFET transistor shown in Figure 2 is considered.
This transistor has an EMS excitation with fmax = 100GHz, large
applied electric field, and heavily doped Nd = 2× 1017 cm−3. Because
two equation systems must be solved simultaneously, the cell size
is chosen equal to 0.01µm for x and y directions [3] and 1µm for
z direction. For the given cell size, the time-step must be chosen
less than 0.01 fs [3]. If the ADI-FDTD method is used to solve
the electromagnetic model (Half-ADI scheme), the time-step limit
increases from 0.01 fs to 1 fs [12]. The new limitation is because the
time-step size in the explicit methods for the semiconductor equations
is a function of the average carrier velocity vd and the spatial step to
comply with the following CFL condition for stability and minimizing
numerical dispersion [21]:

vd∆t ≤ [
∆x−2 + ∆y−2

]−1/2
. (12)

For the given cell size, the time-step sizes is about 1 fs for conventional
FDTD method. Using this time-step and considering that the implicit
ADI-FDTD takes five times the calculation time of the explicit FDTD
in this example, the simulation will be done 20 times faster than the
conventional FDTD method with a numerical dispersion accuracy of
1e-4%. In the above example, by using the ADI-FDTD method to solve
both active device and electromagnetic models, the time-step can be
increased again from 1 fs (Full-ADI scheme). Although this method is
unconditionally stable, the time-step size that must be used to achieve
the desired numerical dispersion accuracy is determined by a simple
approach presented in [22]. The numerical dispersion accuracy, p, is
given by

sin
(

π

(1− p)N

)
=

tan(πs/N)
s

(13)

where s = c∆t/∆max is the Courant number, N = λ/∆max is
the minimum mesh density corresponding to the maximum mesh
∆max, and c is the theoretical velocity. In the full-wave simulation,
the cell size is imposed by the Debye length, which is much
smaller than the practical wavelengths [12]. Thus, the CFL number
(∆tADI -FDTD/∆tFDTD) can be very large and still the numerical
dispersion error of the method remains small. As (12) is a nonlinear
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equation respect to the ∆t, we select a proper ∆t to have sufficient
sample of input signal, output signals, and some harmonics of them
in the time domain. Then if the calculated p from (12) for this ∆t is
not sufficient, a smaller ∆t is tested until the value of p is acceptable.
In our example the fmax and ∆max are equal to 100 GHz and 1µm,
respectively. By selecting ∆t = 10 fs the numerical dispersion accuracy
is obtained equal to an acceptable value of 0.03% and we have 1000
samples in each period of output signals which has sufficient capability
to show nonlinearity effects.

Figure 2. The simulated MESFET structure.

1) DC Simulation: The device is biased to Vds = 2V and
Vgs = −0.5V. The state of the MESFET under dc steady state is
represented by the distribution of potential and carrier density. It is to
be noted that Dirichlet boundary conditions are used at the electrodes
while Neumann boundary conditions are used at the other walls. As
the DC simulation is not to contain the electromagnetic model, a larger
time step ∆t = 0.1 ps is selected for this part. Figure 3 shows the DC
potential and carrier density distributions obtained using the ADI-
FDTD scheme. In compare with conventional FDTD method, the
CPU time for ADI-FDTD method is reduced by 83% with a maximum
numerical dispersion error of 0.001%.

2) AC Simulation: To simulate the electromagnetic wave
propagation, we consider the PML absorbing boundary condition.
An ac excitation is applied to the gate electrode, which is given
as: Vgs(t) = Vgs0 + ∆vgs sin(ωt), where Vgs0 is the DC bias applied
to the gate electrode, ω is the frequency of the applied signal, and
∆vgs is the peak value of the AC signal (0.1 V). Figure 4 shows
the output voltages obtained by multiplying the total current by the
resistance that defines the DC operating point of the transistor [23].
The output drain voltage is estimated using the ADI-FDTD method
and the conventional approach. As can be seen, the results in
the ADI-FDTD case and the conventional FDTD case are in good
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agreement. Considering one time-step, the calculation time for the
active device model is much less than the calculation time for the
electromagnetic model. Therefore, there is no significant difference
between calculation time of one step in the Half-ADI scheme and in the
Full-ADI scheme. Therefore, the simulation until a desired time will
be done approximately 200 times faster than the conventional FDTD
method when ∆t increases from 0.01 fs to 10 fs while the numerical
dispersion error is still very small. For the simulation, 2e6, 2e4, and
2e3 iterations were run with the conventional FDTD method, the half-
ADI method, and the full-ADI method, respectively. The CPU time for
these methods are approximately 2e6 s, 1e5 s, and 1e4 s, respectively.
We use a PC with a Pentium 4 processor (2.5 GHz).

(a) (b)

Figure 3. Sample DC results obtained using the proposed algorithm:
(a) Potential distribution. (b) Carrier density distribution.
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6. CONCLUSION

This work proposed a numerical method for full-wave simulation of
the time dependent semiconductor devices equations in a very low
calculation time in comparison with conventional methods. Using
the ADI-FDTD method to solve DDM equations allows to increase
the time-step size by a factor of 100 and obtaining 83% reduction
in the simulation time with a negligible error. In the full-ADI
scheme, we simulate the electromagnetic and active device equations
simultaneously with the ADI approach. This scheme is a full implicit
method and allows to increase the time-step until the numerical
dispersion accuracy is acceptable. Since the size of the local minimum
cell in the computational domain (which is imposed by the Debye
length) is much smaller than the wavelength, the error limitation is
much larger than the CFL limitation. Therefore, the ADI-FDTD
method is more efficient than the conventional FDTD method for the
full-wave simulation of active microwave/millimeter-wave devices. In
an example, we reach over 99% reduction in the simulation time by
using this approach while still have a good degree of accuracy compared
to the conventional approaches.

ACKNOWLEDGMENT

This work was supported in part by Iran Telecommunication Research
Center.

REFERENCES

1. Kung, F. and H. Chuah, “Modeling of bipolar junction transistor
in FDTD simulation of printed circuit board,” Progress In
Electromagnetics Research, PIER 36, 179–192, 2002.

2. Afrooz, K., A. Abdipour, A. Tavakoli, and M. Movahhedi, “Time
domain analysis of active transmission line using FDTD technique
(application to microwave/MM-wave transistors),” Progress In
Electromagnetics Research, PIER 77, 309–328, 2007.

3. Alsunaidi, M. A., S. M. S. Imtiaz, and S. M. El-Ghazaly,
“Electromagnetic wave effects on microwave transistors using
a full-wave time-domain model,” IEEE Trans. Microw. Theory
Tech., Vol. 44, No. 6, 799–808, Jun. 1996.

4. Feng, Y. K. and A. Hintz, “Simulation of sub-micrometer GaAs
MESFET’s using a full dynamic transport model,” IEEE Trans.
Electron Devices, Vol. 35, 1419–1431, Sep. 1988.



Progress In Electromagnetics Research M, Vol. 11, 2010 201

5. Li, Z.-M., “Two-dimensional numerical simulation of semiconduc-
tor lasers,” Progress In Electromagnetics Research, PIER 11, 301–
344, 1995.

6. Liu, Q. H., C. Cheng, and H. Z. Massoud, “The spectral
grid method: A novel fast Schrödinger-equation solver for
semiconductor nanodevice simulation,” IEEE Trans. Computer-
aided Design Integ. Circuit Sys., Vol. 23, No. 8, Aug. 2004.

7. Cheng, C., J.-H. Lee, K. H. Lim, H. Z. Massoud, and
Q. H. Liu, “3D quantum transport solver based on the perfectly
matched layer and spectral element methods for the simulation
of semiconductor nanodevices,” Journal of Comput. Physics,
Vol. 227, No. 1, 455–471, Nov. 2007.

8. Namiki, T., “3-D ADI-FDTD method — Unconditionally
stable time-domain algorithm for solving full vector Maxwell’s
equations,” IEEE Trans. Microw. Theory Tech., Vol. 48, No. 10,
1743–1748, Oct. 2000.

9. Zheng, F., Z. Chen, and J. Zhang, “Toward the development of
a three-dimensional unconditionally stable finite-difference time-
domain method,” IEEE Trans. Microw. Theory Tech., Vol. 48,
No. 9, 1550–1558, Sep. 2000.

10. Kong, K. B., S. O. Park, and J. S. Kim, “Stability and numerical
dispersion of 3-D Simplified sampling biorthogonal adi method,”
Journal of Electromagnetic Waves and Applications,Vol. 24, No. 1,
1–12, 2010.

11. Rouf, H. K., F. Costen, S. G. Garcia, and S. Fujino, “On
the solution of 3-D Frequency dependent crank-nicolson FDTD
scheme,” Journal of Electromagnetic Waves and Applications,
Vol. 23, No. 16, 2163–2175, 2009.

12. Movahhedi, M. and A. Abdipour, “Efficient numerical methods
for simulation of high-frequency active devices,” IEEE Trans.
Microw. Theory Tech., Vol. 54, No. 6, 2636–2645, Jun. 2006.

13. Cangellaris, A. C. and R. Lee, “On the accuracy of numerical wave
simulations based on finite methods,” Journal of Electromagnetic
Waves and Applications, Vol. 6, No. 12, 1635–1653, 1992.

14. Castillo, S. and S. Omick, “Suppression of dispersion in FDTD
solutions of Maxwell’s equations,” Journal of Electromagnetic
Waves and Applications, Vol. 8, No. 9–10, 1193–1221, 1994.

15. Garcia, S. G., F. Costen, M. F. Pantojal, A. Brown, and
A. R. Bretones, “Open issues in unconditionally stable schemes,”
Progress In Electromagnetics Research Symposium Abstracts, 841,
Beijing, 2009.



202 Mirzavand et al.

16. Kung, F. and H. T. Chuah, “Stability of classical finite-difference
time-domain (FDTD) formulation with nonlinear elements —
A new perspective,” Journal of Electromagnetic Waves and
Applications, Vol. 17, No. 9, 1313–1314, 2003.

17. Liang, F. and G. Wang, “Fourth-order locally one-dimensional
FDTD method,” Journal of Electromagnetic Waves and Applica-
tions, Vol. 22, No. 14–15, 2035–2043, 2008.

18. Zhou, X. and H. Tan, “Monte Carlo formulation of field-dependent
mobility for AIxGa1-xAs,” Solid-Sate Electronics, Vol. 38, 567–
569, 1994.

19. Morton, K. W. and D. F. Mayers, Numerical Solution of Partial
Differential Equations, 2nd Edition, University Press, New York,
Cambridge, 2005.

20. Bau III, D. and L. N. Trefethen, “Numerical linear algebra,”
Philadelphia: Society for Industrial and Applied Mathematics,
1997.

21. Tomizawa, K., Numerical Simulation of Submicron Semiconductor
Devices, Artech House, Norwood, MA, 1993.

22. Sun, G. and C. Trueman, “A simple method to determine the
time-step size to achieve a desired dispersion accuracy in ADI-
FDTD,” Microw. Optic. Tech. Lett., Vol. 40, No. 6, Mar. 2004.

23. Hussein, Y. A. and S. M. El-Ghazaly, “Extending multiresolution
timedomain (MRTD) technique to the simulation of high-
frequency active devices,” IEEE Trans. Microw. Theory Tech.,
Vol. 51, No. 7, 1842–1851, Jul. 2003.


