Vol. 20
Latest Volume
All Volumes
PIERB 109 [2024] PIERB 108 [2024] PIERB 107 [2024] PIERB 106 [2024] PIERB 105 [2024] PIERB 104 [2024] PIERB 103 [2023] PIERB 102 [2023] PIERB 101 [2023] PIERB 100 [2023] PIERB 99 [2023] PIERB 98 [2023] PIERB 97 [2022] PIERB 96 [2022] PIERB 95 [2022] PIERB 94 [2021] PIERB 93 [2021] PIERB 92 [2021] PIERB 91 [2021] PIERB 90 [2021] PIERB 89 [2020] PIERB 88 [2020] PIERB 87 [2020] PIERB 86 [2020] PIERB 85 [2019] PIERB 84 [2019] PIERB 83 [2019] PIERB 82 [2018] PIERB 81 [2018] PIERB 80 [2018] PIERB 79 [2017] PIERB 78 [2017] PIERB 77 [2017] PIERB 76 [2017] PIERB 75 [2017] PIERB 74 [2017] PIERB 73 [2017] PIERB 72 [2017] PIERB 71 [2016] PIERB 70 [2016] PIERB 69 [2016] PIERB 68 [2016] PIERB 67 [2016] PIERB 66 [2016] PIERB 65 [2016] PIERB 64 [2015] PIERB 63 [2015] PIERB 62 [2015] PIERB 61 [2014] PIERB 60 [2014] PIERB 59 [2014] PIERB 58 [2014] PIERB 57 [2014] PIERB 56 [2013] PIERB 55 [2013] PIERB 54 [2013] PIERB 53 [2013] PIERB 52 [2013] PIERB 51 [2013] PIERB 50 [2013] PIERB 49 [2013] PIERB 48 [2013] PIERB 47 [2013] PIERB 46 [2013] PIERB 45 [2012] PIERB 44 [2012] PIERB 43 [2012] PIERB 42 [2012] PIERB 41 [2012] PIERB 40 [2012] PIERB 39 [2012] PIERB 38 [2012] PIERB 37 [2012] PIERB 36 [2012] PIERB 35 [2011] PIERB 34 [2011] PIERB 33 [2011] PIERB 32 [2011] PIERB 31 [2011] PIERB 30 [2011] PIERB 29 [2011] PIERB 28 [2011] PIERB 27 [2011] PIERB 26 [2010] PIERB 25 [2010] PIERB 24 [2010] PIERB 23 [2010] PIERB 22 [2010] PIERB 21 [2010] PIERB 20 [2010] PIERB 19 [2010] PIERB 18 [2009] PIERB 17 [2009] PIERB 16 [2009] PIERB 15 [2009] PIERB 14 [2009] PIERB 13 [2009] PIERB 12 [2009] PIERB 11 [2009] PIERB 10 [2008] PIERB 9 [2008] PIERB 8 [2008] PIERB 7 [2008] PIERB 6 [2008] PIERB 5 [2008] PIERB 4 [2008] PIERB 3 [2008] PIERB 2 [2008] PIERB 1 [2008]
2010-03-01
Sparse Frequency Waveform Design for MIMO Radar
By
Progress In Electromagnetics Research B, Vol. 20, 19-32, 2010
Abstract
Multiple-input multiple-output (MIMO) radar has superior performance to conventional one. It has been introduced to almost every application field of conventional radar in recent years. In practical application, MIMO radar also faces the problem of congested spectrum assignment, which makes it not possible to have a continuous clear band with large bandwidth. Sparse frequency waveform that contains several individual clear bands is a desirable solution to this problem. In this paper, we propose a method to design sparse frequency waveform set with low sidelobes in autocorrelations and cross-correlations by optimizing an objective function constructed based on Power Spectrum Density requirement and sidelobe performances of waveform set. Thus, besides the property of approximate orthogonality, the designed waveforms obtain the ability of avoiding spectrum interference to/from other users. The waveform is phasecoded and thereby has constant modulus. The effectiveness of the proposed method is illustrated by numerical studies. Practical implementation issues such as quantization effect and Doppler effect are also discussed.
Citation
Guohua Wang, and Yi-Long Lu, "Sparse Frequency Waveform Design for MIMO Radar," Progress In Electromagnetics Research B, Vol. 20, 19-32, 2010.
doi:10.2528/PIERB10010405
References

1. Fisher, E., A. Haimovich, R. Blum, L. Cimini, D. Chizhik, and R. Valenzuela, "MIMO radar: An idea whose time has come," Proceedings of IEEE Radar Conference 2004, 71-78, Apr. 2004.

2. Fisher, E., A. Haimovich, R. Blum, L. Cimini, D. Chizhik, and R. Valenzuela, "Spatial diversity in radars --- Models and detection performance," IEEE Transactions on Signal Processing, Vol. 20, No. 3, 823-838, Mar. 2006.
doi:10.1109/TSP.2005.862813

3. Bliss, D. W. and K. W. Forsythe, "Multiple-input multiple-output (MIMO) radar and imaging: Degrees of freedom and resolution," Proceedings of 37th Asilomar Conference on Signals, System, and Computers, 54-59, Nov. 2003.

4. Li, J., "MIMO radar: Diversity means superiority," Proceedings of Adaptive Sensor Array Processing-2006, 305-309, Jun. 2006.

5. Li, J., P. Stoica, L. Xu, and W. Roberts, "On parameter identifiability of MIMO radar," IEEE Signal Processing Letters, Vol. 14, No. 12, 968-971, Dec. 2007.
doi:10.1109/LSP.2007.905051

6. Sammartino, P. F., C. J. Baker, and H. D. Griffths, "MIMO radar performance in clutter environment," Proceedings of 2006 CIE Radar Conference, 1-4, Shanghai, Oct. 2006.

7. Bekkerman, I. and J. Tabrikian, "Target detection and localization using MIMO radars and sonars," IEEE Transactions on Signal Processing, Vol. 54, No. 10, 3873-3883, Oct. 2006.
doi:10.1109/TSP.2006.879267

8. Deng, H., "Polyphase code design for orthogonal netted radar systems," IEEE Transactions on Signal Processing, Vol. 52, No. 11, 3126-3135, Nov. 2004.
doi:10.1109/TSP.2004.836530

9. Khan, H. A., Y. Y. Zhang, C. Ji, C. J. Stevens, D. J. Edwards, and D. O'Brien, "Optimizing polyphase sequences for orthogonal netted radar ," IEEE Signal Processing Letters, Vol. 13, No. 10, 589-592, Oct. 2006.
doi:10.1109/LSP.2006.877143

10. Li, J., P. Stoica, and X. Zhu, "MIMO radar waveform synthesis," Proceedings of IEEE Radar Conference 2008, 1-6, May 2008.
doi:10.1109/RADAR.2008.4721035

11. He, H., P. Stoica, and J. Li, "Designing unimodular sequence sets with good correlations | Including an application to MIMO radar," IEEE Transactions on Signal Processing, Vol. 57, No. 11, 4391-4405, 2009.
doi:10.1109/TSP.2009.2025108

12. Frazer, G. J., Y. I. Abramovich, B. A. Johnson, and F. C. Robey, "Recent results in MIMO over-the-horizon radar," Proceedings of IEEE Radar Conference, 1-6, May 2008.

13. Lesturgie, M., "Improvement of high-frequency surface waves radar performances by use of multiple-input multiple-output configurations ," IET Radar Sonar & Navigation, Vol. 3, 49-61, May 2008.

14. Wang, G. H. and Y. L. Lu, "High resolution MIMO-HFSWR using sparse frequency waveforms," Proceedings of ICSP, 1-6, Oct. 2008.

15. Lindenfeld, M. J., "Sparse frequency transmit and receive waveform design," IEEE Trans. on Aerospace and Electronic Systems, Vol. 40, 851-861, Jul. 2004.

16. Liu, W. X., Y. L. Lu, and M. Lesturgie, "Optimal sparse waveform design for HFSWR system," Proc. 2007 International Waveform Diversity and Design conference, 127-130, Pisa, Italy, May 26-30, 2007.

17. Wang, G. H. and Y. L. Lu, "Sparse frequency transmit waveform design with soft-power constraint by using PSO algorithm," Proc. IEEE Radar 2008, 127-130, Roma, Italy, May 2008.

18. Smith, S. T., "Optimum phase-only adaptive nulling," IEEE Transactions on Signal Processing, Vol. 47, No. 2, 1835-1843, Feb. 1999.
doi:10.1109/78.771033

19. Kennedy, J. and R. Ebrhart, "Particle swarm optimization," Proc. IEEE Conf. Neural Networks IV, 1942-1948, Nov. 1995.

20. Ebrhart, R. and J. Kennedy, "A new optimizer using particle swarm theory," Proc. Intern. Symp. Micro. Mach. Hum. Sci., 39-43, Apr. 1995.
doi:10.1109/MHS.1995.494215

21. Trelea, I. C., "The particle swarm optimization algorithm: Convergence analysis and parameter selection," Information Processing Letters, Vol. 85, 317-325, 2003.
doi:10.1016/S0020-0190(02)00447-7

22. Parsopoulos, K. E. and M. N. Vrahatis, "Recent approaches to global optimization problems through particle swarm optimization," Natural Computing, Vol. 1, 235-306, 2002.
doi:10.1023/A:1016568309421

23. Abramovich, Y. I., "Bounds on the volume and height distributions for the MIMO radar ambiguity function," IEEE Signal Processing Letters, Vol. 15, 505-508, 2008.
doi:10.1109/LSP.2008.922514