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Abstract—Multiple-input multiple-output (MIMO) radar has supe-
rior performance to conventional one. It has been introduced to almost
every application field of conventional radar in recent years. In prac-
tical application, MIMO radar also faces the problem of congested
spectrum assignment, which makes it not possible to have a continu-
ous clear band with large bandwidth. Sparse frequency waveform that
contains several individual clear bands is a desirable solution to this
problem. In this paper, we propose a method to design sparse fre-
quency waveform set with low sidelobes in autocorrelations and cross-
correlations by optimizing an objective function constructed based on
Power Spectrum Density requirement and sidelobe performances of
waveform set. Thus, besides the property of approximate orthog-
onality, the designed waveforms obtain the ability of avoiding spec-
trum interference to/from other users. The waveform is phase-coded
and thereby has constant modulus. The effectiveness of the proposed
method is illustrated by numerical studies. Practical implementation
issues such as quantization effect and Doppler effect are also discussed.

1. INTRODUCTION

Multiple-input multiple-output (MIMO) radar is a new radar concept
enjoying extensive studies nowadays [1-7]. In many studies, MIMO
radar is supposed to transmit multiple independent waveforms on
transmit end so that receivers can separate them and thereby achieve
more degrees of freedom in signal processing. In this kind of MIMO
radar, waveforms are required to have good sidelobe performance in
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both autocorrelation functions (ACFs) and cross-correlation functions
(CCFs). Orthogonal waveform design is therefore an important topic
in MIMO radar study. There are many works on this topic [8-11 and
papers therein]. The main idea in these papers is to reduce the sidelobe
levels in both the ACFs and CCFs by various optimization methods.
In radar and communication applications, a section of clear
and continuous wide band has never been available due to the
ever increasing spectrum assignment. As MIMO radar has been
proposed for many conventional radar applications, it would also
face this problem, especially in applications associated with UHF
and HF bands [12-15]. Sparse frequency waveform that contains
several individual clear bands is a desirable solution to this problem.
With sparse frequency waveform, radar systems can avoid spectrum
interference from and/or to other customers. Meanwhile, combining
several clear bands together can also improve the range resolution
as the total bandwidth is increased. However, it could lead to the
problem of high range sidelobes. There are many papers that focus
on designing sparse frequency waveforms. Most of the works were
reviewed in [15]. In [15], sparse frequency transmitting-receiving
waveform design was introduced. The main idea is to design the sparse
frequency transmitting waveform without sidelobe consideration first
and then design the receiving waveform with sidelobe constraint. The
main problem of this method is the mismatch caused in the receiver
design. Papers [16,17] then proposed improved method to design
sparse frequency transmitting waveform with sidelobe constraint.
When it comes to the problem of designing orthogonal sparse
frequency waveforms, there is few work in current literature. In
this paper, we extend our works on designing sparse frequency
transmitting waveform to MIMO radar. The designed waveforms can
simultaneously satisfy the requirements of desired sparse frequency
property and low sidelobe levels in both the autocorrelation functions
and cross-correlation functions. To achieve this objective, we construct
an objective function based on the power spectral density (PSD)
requirement and correlation requirement. Then, this objective function
is minimized so that the energy in all stopbands is minimized while
keeping the sidelobes in ACFs and CCFs as low as possible. This
optimization problem is highly nonlinear, and the global minimum is
difficult to be achieved through conventional computation method as
the one introduced in [15]. In this paper, we employ Particle Swarm
Optimization (PSO) algorithm as the optimization engine to obtain
an optimal solution to this problem. The waveforms designed by
this paper are phase-controlled with constant modulus [18]. Several
design examples show the performance of the proposed method along
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with discussions on the properties of designed waveforms. Some
implementation issues such as Doppler tolerance and quantization
effect are also discussed.

This paper is organized as follows. Section 1 gives an introduction.
Section 2 presents the methodology for this paper, including the
optimization model and a brief introduction to the implementation
of PSO algorithm. Section 3 shows some case studies along with
discussions. Section 4 makes the conclusion.

2. OPTIMIZATION MODEL AND PSO ALGORITHM

In this section, we will first introduce the waveform model, based on
which we then derive the optimization model. Finally, the optimization
engine for this problem is briefly introduced.

2.1. Waveform Model and Objective Function

The waveforms designed in this paper are phase-only complex
waveforms. The advantage of this kind of waveform is that the
waveform modulus is constant over all time duration, so that the
transmitter can work under full power condition. We assume that
there are N (set size) waveforms to be designed. Each is represented
by a sequence of M (sequence length) samples. The n-th waveform

. . . . T

is represented by x, = [e”’"vl,e]‘z’“»?, e eW”vM] e CMx1 where
n=1,..., N, the superscript T' denotes the vector transpose, and ¢, 1,
m = 1,..., M are unknown phases to be determined. The waveform

set, i.e., waveform matrix, is expressed by assembling all N waveforms
as

X(®)=[x1 -+ XN |pun (1)
where ® is the phase vector defined by:

DN =011, 0125 s Gnms - - N ] 1<n<N, 1<m<M. (2)

Though we design phase-only waveforms with constant magnitude
in this paper, we can easily generalize it to the phase-amplitude joint
design method in order to take advantage of more degrees of freedom
by introducing varying amplitude for each waveform.

For MIMO radar waveform design, we concern about not only the
sidelobe levels in ACFs but also those in CCFs. That is the main
difference compared with single waveform design. The mathematical
expressions of them are given below.
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Firstly, for phase-only digital waveforms, the autocorrelations and
crosscorrelations in discrete forms are defined by [8]:

M—1—|k|

1 .

ACF (xn, k)= n;) X (m)xi(m+k), —M<k<M
n=1,2,...,.N (3)

and

1 M—1—|k|
CCF (xp,%q, k) Z xp (m)xy (m+k), —M <k<M

m=0

p#q¢,pqg=12,....N (4)

where AC'F (xy, k) and CCF (x,,X4, k) are the aperiodic autocorrela-
tion function of digital sequence x,, and the crosscorrelation function
of digital sequences x, and x,, respectively. The asterisk denotes the
complex conjugate, and k is the discrete time index.

2.2. Objective Functions

As mentioned in the introduction, there are two requirements to
meet. One is the PSD requirement, and the other is the correlation
requirement. We have two sub-objective functions, named as Objpsp
and Objor, representing these two requirements respectively. The
total objective function constructed based on these two sub-objective
functions can be expressed as:

Obj1otar = AObjpsp + (1 — A) - Objcor (5)

where A\, 0 < A < 1, is a weighting coefficient to balance these two
sub-objective functions.

2.2.1. Objective Function for PSD

On each transmitting site, the band assignment is assumed to
be available from prior information or from real-time observation.
Normally, for monostatic MIMO radar that has its transmitters and
receivers collocated, stopband assignment for each transmitter may be
the same. But for multistatic MIMO radar that has transmitters and
receivers widely distributed, stopband assignment for each transmitter
may be different. For the purpose of simplification, we assume the
stopband assignment for each waveform to be the same in this paper.
Further extension can be easily made. Then, based on the knowledge
of band assignment for each waveform, an desired power spectrum
distribution in the whole frequency region of interest, say, [f1, f2],
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where a number of stopbands are distributed, can be set as P (f). For
the n-th transmitting waveform, its true PSD is computed through
|20 (f)|%, n=1,..., N, where z, (f) is the Discrete Fourier Transform
of the waveform. The PSD sub-objective function can be written in
the form of minimum mean square error (MMSE), i.e., the difference
between the desired PSD and true PSD, as

Obipso = 3 [ wa () (Jaw (N =P (1) df

+ZZ/ 7) (len (DE = PD) a (6)

nlgl

where wy, (f) is the weight for frequency f in the n-th waveform.
N is the number of stopbands, and N, is the number of passbands.
f} and f2 are the starting and ending points for the r-th stopband.
f; and ng are the starting and ending points for the g-th passband.
Because {x,, (f)|n =1,..., N} are from Discrete Fourier Transform of
the waveform set, which is a function of ®, the PSD objective function
is also a function of phase vector ®. It is easy to evaluate (6) in a
discrete form through Fast Fourier Transform (FFT). By minimizing
the PSD objective function, the candidate transmitting signal can be
selected such that it meets the PSD requirement.

2.2.2. Objective Function for CCF and ACF

The objective function for CCF and ACF is built based on the
total sidelobe energy of all autocorrelations plus the total energy of
crosscorrelations from different waveform pairs. Mathematically, we
express it as:

N M-1
objcr=Y > |ACF(xn, k)" + ) Z Z Z |CCF (xp, %4, k)|?
n=1k=n1 p=1 g=p+1 k=—M+1

(7)
where n; defines the mainlobe width, and A; is the weight balancing
these two items on the right hand of (7). n; and A; can be determined
based on application requirement.
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2.2.3. PSO Algorithm

PSO algorithm is a fast developing evolutionary algorithm. It is
widely adopted in various areas with universal verification of its
global searching ability [19-22]. Compared with other evolutionary
algorithms, PSO less likely gets stuck in a local optimum due to its
ability of random perturbation. In this paper, PSO algorithm is used
to search for the optimal phase vector that can satisfy the waveform
design requirements.

We use the standard PSO algorithm to optimize (5). The
optimizer initially generates a group of, say L, random phase vectors as
potential solutions. Each phase vector is called a particle with its cost
value evaluated from the specified objective function. Each particle will
keep track of its positions in the problem space and store the position
with the best fitness value it has achieved so far as the population best,
say, Ppest- The optimizer will also keep track of the particle position
that has the best fitness value obtained so far by any particle in the
population. This position is taken as the global best, say, Gpes:. The
population best and global best are initialized as below:

® - Pgest and arg min Obj7ora(®7) — Gpest, j=1,...,L.  (8)

Iteration progress starts after initialization. In each iteration,
particles are employed to evaluate their fitness values based on the
objective function, and the fitness values are taken to update the Gypeg;
and Ppes. Afterwards each particle will be updated according to

V(i+1l) =w-V(i)+c-U(0,1) ® (Ppest (1) — ® (7))
+c2-U(0,1) © (Gpest (1) — D (7)) (9)
®(i+1) = @)+ V(i) (10)
where ®(7) is the particle position of the ith iteration, and ®(i+1) is the
particle position of the following iteration. V(i) is the velocity of the
ith iteration and V (i+1) the next iteration. w is inertia weight. ¢; and
co are learning factors, and U(0,1) is a random vector with elements
uniformly distributed in the region of [0,1]. Operator ® means the
Hadamard matrix operator. The selection of parameters w, c¢1, and
co can be referred to [22] and [23], that is, ¢y = c2 = 2, and w has
an initial value around 1 and gradually declines towards 0. PSO will
iterate until the desired fitness value is achieved or a given maximum
number of iterations is reached.

PSO is efficient in computation effort and memory requirements.
For this waveform optimization, the main computational load for each
iteration comes from the update of particle position and velocity. This
step involves only element multiplication and addition, as shown in (6)
and (7). Thus, the computation effort and memory requirements are
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Figure 1. Flow chart of PSO algorithm.

approximately linear in the dimension of problem space NM. The
flowchart of PSO implementation is showed in Fig. 1.

3. SIMULATION STUDY

In this section, we will evaluate the performance of the proposed
method by designing several sparse frequency waveform sets. In the
following case study, refereeing to (6), we set the weight w, (f) for
stopband to be 10 and for passband to be 0, which means that we do
not care about the shape of passband spectrum. Meanwhile, we set
P (f) to be 0 for stopbands and 1 for passbands.

3.1. Experiment 1: 3-stopbands

Now, let’s study a relative simple case first. There are three stopbands,
say, 200-220kHz, 320-340 kHz, 400-430kHz in total band 0-600 kHz.
The sparseness, the ratio of bandwidth in all stopbands to the total
bandwidth, in this case is 7/60. The pulse duration is 100 ps.
We, in this case, set ny = 2, \y = 1, and A = 0.5. Fig. 2(a)
shows the results of autocorrelations, Fig. 2(b) crosscorrelations, and
Fig. 3 power spectral density. For the ACFs, the Peak Sidelobe
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Figure 2. Correlation performances of 3 waveforms: 3 stopbands case.
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Figure 3. Power spectrum density of 3 waveforms: 3 stopbands case.

Levels (PSLs) of three waveforms are —13.5dB, —14.2dB, —14.6 dB,
respectively. The Integrated Sidelobe Levels (ISLs) are 3.8dB, 3.2dB,
and 3.5dB, respectively. For the CCFs, the PSLs of three waveforms
are —12.3dB, —10.5dB, —12.7dB, respectively. The ISLs are 3.1dB,
3.2dB, and 2.9 dB, respectively. As the MIMO radar performance can,
in some sense, be constrained by the ambiguity function, the averaged
performance is also a metric for evaluating the set performance.
We evaluate the averaged performance based on the MIMO radar
ambiguity function given in [23]. The AF is given by:

N N
Xmimo (T,v) = Z Z [Xnm (T, U)|2 (11)

n=1m=1
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By setting the Doppler shift to be zero, we get the correlation function:

XMIMO TO Z|Xnn 7_0| +ZZ|Xnm TO

nlml

2 Nyacr (1,0) + (N? = N) xcor (1,0)  (12)

where x acr and xocor are the averaged ACFs and the averaged CCF's
of MIMO radar, respectively. For ACF, the averaged PSL is —16.5dB,
and the averaged ISL is 3.5 dB. For CCF, the averaged PSL is —16.9 dB,
and the averaged ISL is 3.1dB. Thus, collectively, this waveform set
has better PSL performance in both ACF and CCF compared to each
individual waveform. The stopband suppression in each waveform is
22.1dB, 23.0dB, and 25.0dB.

3.2. Experiment 2: 5-stopbands Case

Then, let’s study a relative complicated case. There are five stopbands
falling in 90-160kHz, 200-240kHz, 320-350kHz, 400-440kHz, and
500-520kHz over a total band of 0-600kHz. The sparseness of this
case is 1/3. For the parameters setting, we follow those in Section 3.1.
The pulse duration is 200 us. In this case, there are 2 times as many
samples as in three-stopbands case. Fig. 4(a) shows the results of
autocorrelation, Fig. 4(b) the results of crosscorrelation, and Fig. 5
the results of power spectral density. For ACF, the PSLs of three
waveforms are —9.7dB, —9.7dB, —8.3dB, respectively. And the
averaged PSL is —9.7dB. The ISLs are 0.35dB, —0.11 dB, and 0.29 dB,
respectively. And the averaged ISL is 0.17 dB. Compared to the results
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Figure 5. Power spectrum density of 3 waveforms: 5 stopbands case.

in Experiment 1, the ACF performance of each waveform in this
case decreases largely. That is mainly because the sparseness of each
waveform increases largely. For CCF, the PSLs of three waveforms are
—14.0dB, —13.6dB, —13.9dB, respectively. And the averaged PSL
is —16.0dB. The ISLs are 1.90dB, 1.44dB, and 1.15dB, respectively.
And the averaged ISL is 1.49 dB. Compared with Experiment 1, though
the PSLs of CCF's are relatively lower in this case, the ISL performance
in this case is impaired. Based on both the ACF performance and
CCF performance, we can see that the sparseness has more effect on
the performance of ACF than that of CCF. The stopband suppression
for three waveforms is 18.3dB, 19.8dB, 19.2 dB, respectively.

Comparing to these two cases, we can see that due to the
increase in sparseness, the total performance in case two is decreased.
Meanwhile, as the PSD is an inverse Fourier transform of ACF, if we
increase the suppression in stopbands, the performance in correlations
will decrease, or vice versa. In addition, based on these two examples,
one important point is that we can have a good chance to reduce the
averaged PSL while maintaining the other performances satisfying for
MIMO radar application.

3.3. Doppler Resilience

In practical operations there will be Doppler caused mismatch in the
matched filter when the signal is reflected back by moving targets.
Doppler effect can be illustrated by ambiguity function in general.
Ambiguity function of waveform 1 in Experiment 1 is illustrated in
Fig. 6, from which we can see that, as the Doppler frequency increases,
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the performance degradation due to mismatch will increase. More
specifically, we see the matched filter output peaks of this waveform in
Fig. 7. As illustrated in Fig. 7, as long as the Doppler-time product
of waveform is smaller than 0.5, the output signal amplitude will
not be significantly reduced (signal loss < 3dB). However, for larger
Doppler-time product, the performance will degrade significantly.
That is mainly because the designed waveform has random phases,
and therefore it is noise-like and very sensitive to the Doppler frequency
when filtered by matched filter.

Doppler (vT)
Range Index &0 0

Figure 6. Ambiguity function of waveform 1 from Experiment 1.
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3.4. Quantization Effects

For practical operations, the optimal phase values may be quantized
before implementation in order to simplify the hardware configuration.
In simulation, we can simply round down the phase values to the
nearest angle bin. The loss in stopband suppression is 4.4dB, 0.4dB,
0.02dB, and 0dB for 2, 4, 8, and 16 bit quantization. Meanwhile,
the PSLs of the quantized waveforms are no higher than their original
counterpart. Thus, in this case, with 8-bit quantization, we can get
comparable PSD and ACF performance.

4. CONCLUSIONS

In this paper, we presented a method for designing multiple sparse
frequency waveforms for MIMO radar. The basic concept is to
minimize a total penalty function based on both the correlation
performance and power spectral density performance. Numerical
examples were provided to demonstrate the effectiveness of the
proposed method. A big difference compared to single waveform
design is that though the individual waveform may have high PSLs
in CCF and ACF, the averaged performance, i.e., the set performance
evaluated by the MIMO radar ambiguity function can be far better
than the individual performance. Thus, attribute to MIMO concept,
we may obtain good potential to reduce the PSLs collectively rather
than individually. Implementation issues such as quantization effect as
well as Doppler tolerance have also been discussed.
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