Vol. 100
Latest Volume
All Volumes
PIER 180 [2024] PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2010-01-11
Sensitivity Analysis of 3-d Composite Structures through Linear Embedding via Green's Operators
By
Progress In Electromagnetics Research, Vol. 100, 309-325, 2010
Abstract
We propose a methodology --- based on linear embedding via Green's operators (LEGO) and the eigencurrent expansion method (EEM) --- for solving electromagnetic problems involving large 3-D structures comprised of ND ≥ 1 bodies. In particular, we address the circumstance when the electromagnetic properties or the shape of one body differ from those of the others. In real-life structures such a situation may be either the result of a thoughtful design process or the unwanted outcome of fabrication tolerances. In order to assess the sensitivity of physical observables to localized deviations from the "ideal" structure, we follow a deterministic approach, i.e., we allow for a finite number of different realizations of one of the bodies. Then, for each realization we formulate the problem with LEGO and we employ the EEM to determine the contribution of the ND - 1 "fixed" bodies. Since the latter has to be computed only once, the overall procedure is indeed efficient. As an example of application, we investigate the sensitivity of a 2-layer array of split-ring resonators with respect to the shape and the offset of one element in the array.
Citation
Vito Lancellotti, Bastiaan P. de Hon, and Antonius G. Tijhuis, "Sensitivity Analysis of 3-d Composite Structures through Linear Embedding via Green's Operators," Progress In Electromagnetics Research, Vol. 100, 309-325, 2010.
doi:10.2528/PIER09120108
References

1. Engheta, N., W. D. Murphy, V. Rokhlin, and M. S. Vassiliou, "The fast multipole method (FMM) for electromagnetic problems," IEEE Trans. Antennas Propag., Vol. 40, 634-641, Jun. 1992.
doi:10.1109/8.144597

2. Song, J. M., C. C. Lu, and W. C. Chew, "MLFMA for electromagnetic scattering from large complex objects," IEEE Trans. Antennas Propag., Vol. 45, 1488-1493, Oct. 1997.
doi:10.1109/8.633855

3. Harrington, R. F., Field Computation by Moment Methods, MacMillan, 1968.

4. Peterson, A. F., S. L. Ray, and R. Mittra, Computational Methods for Electromagnetics, , IEEE Press, 1998.

5. Balanis, C. A., Advanced Engineering Electromagnetics, Wiley, 1989.

6. Peng, Z. Q. and A. G. Tijhuis, "Transient scattering by a lossy dielectric cylinder: Marching-on-in-frequency approach," Journal of Electromagnetic Waves and Applications, Vol. 7, No. 5, 1993.
doi:10.1163/156939393X00840

7. Tijhuis, A. G., M. C. Beurden, and A. P. M. Van Zwamborn, "Iterative solution of field problems with a varying physical parameter," Elektrik, Turkish Journal of Electrical Engineering & Computer Sciences, Vol. 10, No. 2, 2002.

8. Yeo, J., V. V. S. Prakash, and R. Mittra, "Efficient analysis of a class of microstrip antennas using the characteristic basis function method (CBFM)," Microwave and Optical Technology Letters, Vol. 39, No. 6, 456-464, 2003.
doi:10.1002/mop.11247

9. Mittra, R. and K. Du, "Characteristic basis function method for iteration-free solution of large method of moments problems," Progress In Electromagnetics Research B, Vol. 6, 307-336, 2008.
doi:10.2528/PIERB08031206

10. Li, M. K. and W. C. Chew, "Wave-field interaction with complex structures using equivalence principle algorithm," IEEE Trans. Antennas Propag., Vol. 55, 130-138, Jan. 2007.
doi:10.1109/TAP.2006.888453

11. Matekovitz, L., V. A. Laza, and G. Vecchi, "Analysis of large complex structures with the synthetic-functions approach," IEEE Trans. Antennas Propag., Vol. 55, 2509-2521, Sep. 2007.
doi:10.1109/TAP.2007.904073

12. Yuan, H.-W., S.-X. Gong, Y. Guan, and D.-Y. Su, "Scattering analysis of the large array antennas using the synthetic basis functions method," Journal of Electromagnetic Waves and Applications, Vol. 23, No. 2-3, 309-320, 2009.
doi:10.1163/156939309787604364

13. Yla-Oijala, P. and M. Taskinen, "Electromagnetic scattering by large and complex structures with surface equivalence principle algorithm," Waves in Random and Complex Media, Vol. 19, 105-125, Feb. 2009.
doi:10.1080/17455030802585365

14. Xiao, G., J.-F. Mao, and B. Yuan, "A generalized surface integral equation formulation for analysis of complex electromagnetic systems," IEEE Trans. Antennas Propag., Vol. 57, 701-710, Mar. 2009.
doi:10.1109/TAP.2009.2013425

15. Laviada, J., F. Las-Heras, M. R. Pino, and R. Mittra, "Solution of electrically large problems with multilevel characteristic basis functions," IEEE Trans. Antennas Propag., Vol. 57, 3189-3198, Oct. 2009.

16. Golub, G. H. and C. F. V. Loan, Matrix Computations, Johns Hopkins University Press, 1996.

17. Van De Water, A. M., B. P. De Hon, M. C. Van Beurden, A. G. Tijhuis, and P. De Maagt, "Linear embedding via Green's operators: A modeling technique for finite electromagnetic band-gap structures," Phys. Rev. E, Vol., Vol. 72, 1-11, Nov. 2005.

18. Lancellotti, V., B. P. De Hon, and A. G. Tijhuis, "An eigencurrent approach to the analysis of electrically large 3-D structures using linear embedding via Green's operators," IEEE Trans. Antennas Propag., Vol. 57, 3575-3585, Nov. 2009.

19. Lancellotti, V., B. P. De Hon, and A. G. Tijhuis, "On the convergence of the eigencurrent expansion method applied to linear embedding via Green's operators,", submitted Oct. 2009.

20. Bekers, D. J., S. J. L. Van Eijndhoven, and A. G. Tijhuis, "An eigencurrent approach for the analysis of finite antenna arrays," IEEE Trans. Antennas Propag., Vol. 58, Dec. 2009.

21. Lancellotti, V., B. P. De Hon, and A. G. Tijhuis, "A total inverse scattering operator formulation for the analysis of large 3-D structures," 11th ICEAA, Torino, Italy, Sept. 2009.

22. Lancellotti, V., B. P. De Hon, and A. G. Tijhuis, "Analysis of antennas in the presence of large composite 3-D structures with linear embedding via Green's operators (LEGO) and a modified EFIE," 4th EuCAP, Barcelona, Spain, to be presented, Apr. 2010.

23. Lindell, I., "Huygens' principle in electromagnetics," Science, Measurement and Technology, IEE Proceedings, Vol. 143, 103-105, Mar. 1996.
doi:10.1049/ip-smt:19960218

24. Rao, S. M., D. R. Wilton, and A. W. Glisson, "Electromagnetic scattering by surfaces of arbitrary shape," IEEE Trans. Antennas Propag., Vol. 30, 409-418, May 1982.
doi:10.1109/TAP.1982.1142818

25. Anderson, E., Z. Bai, C. Bischof, S. Blackford, J. Demmel, J. Dongarra, J. D. Croz, A. Greenbaum, S. Hammarling, A. McKenney, and D. Sorensen, LAPACK Users' Guide, SIAM, 1999.

26. Gurel, L., O. Ergul, and A. Unal, "Accurate analysis of metamaterials involving finite arrays of split-ring resonators and thin wires," PIERS Proceedings, 470-473, Beijing, China.

27. Ergul, O., T. Malas, C. Yavuz, A. Unal, and L. Gurel, "Computational analysis of complicated metamaterial structures using MLFMA and nested preconditioners," 2nd EuCAP, Edinburg, UK, Nov. 2007.