Vol. 101
Latest Volume
All Volumes
PIER 180 [2024] PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2010-02-01
FDTD Method Investigation on the Polarimetric Scattering from 2-d Rough Surface
By
Progress In Electromagnetics Research, Vol. 101, 173-188, 2010
Abstract
A polarimetric scattering from two-dimensional (2-D) rough surface is presented by the finite-difference time-domain (FDTD) algorithm. The FDTD calculations with sinusoidal and pulsed plane wave excitations are performed. As the sinusoidal FDTD is concerned, it is convenient to obtain the scattered angular distribution of normalized radar cross section (NRCS) from rough surface for a single frequency. And the advantage of pulsed FDTD is to calculate the frequency distribution of NRCS from rough surface in a scattered direction of interest. A single frequency scattering from rough surface by sinusoidal FDTD is validated by the result of Kirchhoff Approximation (KA). And the frequency response of rough surface by pulsed FDTD is verified by that of sinusoidal FDTD, which requires an individual FDTD run for every frequency. To save computation time, the MPI-based parallel FDTD method is adopted. And the computation time of parallel FDTD algorithm is dramatically reduced compared to a single-process implementation. Finally, the polarimetric scattering of rough surface with the sinusoidal and pulsed FDTD illumination are presented and analyzed for different polarizations.
Citation
Juan Li, Li-Xin Guo, and Hao Zeng, "FDTD Method Investigation on the Polarimetric Scattering from 2-d Rough Surface," Progress In Electromagnetics Research, Vol. 101, 173-188, 2010.
doi:10.2528/PIER09120104
References

1. Bourlier, C., "Azimuthal harmonic coefficients of the microwave backscattering from a non-Gaussian ocean surface with the first-order SSA model," IEEE Trans. Geosci. Remote Sensing, Vol. 42, No. 11, 2600-2611, 2004.
doi:10.1109/TGRS.2004.836874

2. Cocheril, Y. and R. Vauzelle, "A new ray-tracing based wave propagation model including rough surfaces scattering," Progress In Electromagnetics Research, Vol. 75, 357-381, 2007.
doi:10.2528/PIER07061202

3. Guo, L. X. and Z. S. Wu, "Application of the extended boundary condition method to electromagnetic scattering from rough dielectric fractal sea surface," Journal of Electromagnetic Waves and Applications, Vol. 18, No. 9, 1219-1234, 2004.
doi:10.1163/1569393042955342

4. Torrungrueng, D., H. T. Chou, and J. T. Johnson, "A novel acceleration algorithm for the computation of scattering from two-dimensional large-scale perfectly conducting random rough surfaces with the forward-backward method," IEEE Trans.Geosci. Remote Sensing, Vol. 38, No. 4, 1656-1668, 2000.
doi:10.1109/36.851965

5. Jandhyala, V., E. Michielssen, S. Balasubramaniam, and W. C. Chew, "A combined steepest descent-fast multipole algorithm for the fast analysis of three-dimensional scattering by rough surfaces," IEEE Trans. Geosci. Remote Sens., Vol. 36, No. 3, 738-748, 1998.
doi:10.1109/36.673667

6. Xia, M. Y., C. H. Chan, S. Q. Li, B. Zhang, and L. Tsang, "An e±cient algorithm for electromagnetic scattering from rough surfaces using a single integral equation and multilevel sparse-matrix canonical-grid method," IEEE Trans. Antennas Propagat., Vol. 51, No. 6, 1142-1149, 2003.
doi:10.1109/TAP.2003.812238

7. Lesha, M. J. and F. J. Paoloni, "Transient scattering from arbitrary conducting surfaces by iterative solution of the electric field integral equation," Journal of Electromagnetic Waves and Applications, Vol. 10, No. 8, 1139-1167, 1996.
doi:10.1163/156939396X01224

8. Johnson, J. T. and R. J. Burkholder, "A study of scattering from an object below a rough surface," IEEE Trans. Geosci. Remote Sens., Vol. 42, No. 1, 59-66, 2004.
doi:10.1109/TGRS.2003.815670

9. Li, J., L. X. Guo, H. Zeng, and X..B. Han, "Message-passing-interface-based parallel FDTD investigation on the EM scattering from a 1-D rough sea surface using uniaxial perfectly matched layer absorbing boundary," J. Opt. Soc. Am. A., Vol. 26, No. 6, 1494-1502, 2009.
doi:10.1364/JOSAA.26.001494

10. Li, J., L. X. Guo, and H. Zeng, "FDTD investigation on bistatic scattering from two-dimensional rough surface with UPML absorbing condition," Waves in Random and Complex Media, Vol. 19, No. 3, 418-429, 2009.
doi:10.1080/17455030902759068

11. Li, J., L. X. Guo, and H. Zeng, "FDTD investigation on the electromagnetic scattering from a target above a randomly rough a sea surface," Waves in Random and Complex Media, Vol. 18, No. 4, 641-650, 2008.
doi:10.1080/17455030802302134

12. Guo, L. X., J. Li, and H. Zeng, "Bistatic scattering from a three-dimensional object above a two-dimensional randomly rough surface modeled with the parallel FDTD approach," J. Opt. Soc. Am. A., Vol. 26, No. 11, 2383-2392, 2009.
doi:10.1364/JOSAA.26.002383

13. Li, J., L. X. Guo, and H. Zeng, "FDTD investigation on bistatic scattering from a target above two-layered rough surfaces using UPML absorbing condition," Progress In Electromagnetics Research, Vol. 88, 197-211, 2008.
doi:10.2528/PIER08110102

14. Guiffaut, C. and K. Mahdjoubi, "A parallel FDTD algorithm using the MPI library," IEEE Antennas and Propagation Magazine, Vol. 43, No. 2, 94-103, 2001.
doi:10.1109/74.924608

15. Kuga, Y. and P. Phu, "Experimental studies of millimeter wave scattering in discrete random media and from rough surfaces," Progress In Electromagnetics Research, Vol. 14, 37-88, 1996.

16. Gedney, S. D., "An anisotropic PML absorbing media for the FDTD simulation for fields in lossy and dispersive media," Electromagnetics, Vol. 16, No. 4, 425-449, 1996.
doi:10.1080/02726349608908487

17. Taflove, A. and S. C. Hagness, Computational Electrodynamics: The Finite-difference Time-domain Method, Artech House, 2005.

18. Juntunen, J. S. and T. D. Tsiboukis, "Reduction of numerical dispersion in FDTD method through artificial anisotropy," IEEE Trans. Microwave Theory Tech., Vol. 58, No. 5, 582-588, 2000.
doi:10.1109/22.842030

19. Fung, A. K., M. R. Shah, and S. Tjuatja, "Numerical simulation of scattering from three-dimensional randomly rough surfaces," IEEE Trans. Geosci. Remote Sensing, Vol. 32, No. 5, 986-995, 1994.
doi:10.1109/36.312887

20. Luebbers, R. J., K. S. Kunz, M. Schneider, and F. Hunsberger, "A finite-difference time-domain near zone to far zone transformation," IEEE Trans. Antennas Propagat., Vol. 39, No. 4, 429-433, 1991.
doi:10.1109/8.81453

21. Kong, J. A., Electromagnetic Wave Theory, Wiley, 1986.

22. Yu, W. H., Y. J. Liu, T. Su, N. T. Hunag, and R. Mittra, "A robust parallel conformal finite difference time-domain processing package using the MPI library," IEEE Antennas and Propagation Magazine, Vol. 47, No. 3, 39-59, 2005.
doi:10.1109/MAP.2005.1532540

23. Ogilvy, J. A., Theory of Wave Scattering from Random Rough Surface, IOP Publishing, 1991.