1. Hwu, S. U., Y.-C. Loh, and C. C. Sham, "Space station wireless local area network signal characteristics modeling and measurements," 2006 IEEE/AIAA 25th Digital Avionics Systems Conference, Portland, Oregon, October 2006.
2. Niu, W., J. Li, and T. Talty, "Ultra-wideband channel modeling for intravehicle environment," EURASIP Journal on Wireless Communications and Networking, Vol. 2009, Article ID 806209, 12, 2009.
3. Van't Hof, J. P. and D. D. Stancil, "Characterizing dispersion in the enclosed-space radio channel using a composite mode model," IEEE/ACES International Conference on Wireless Communications and Applied Computational Electromagnetics, Honolulu, HI, April 2005.
4. Naqvi, I. H. and G. E. Zein, "Time domain measurements for a time reversal SIMO system in reverberation chamber and in an indoor environment," IEEE International Conference on Ultra-wideband, September 2008.
5. Zhou, C., N. Guo, and R. C. Qiu, "Time-reversed ultra-wideband (UWB) multiple input multiple output (MIMO) based on measured spatial channels," IEEE Transactions on Vehicular Technology, Vol. 59, No. 6, 2884-2898, July 2009.
6. Win, M. Z. and R. A. Scholtz, "Characterization of ultra-wide bandwidth wireless indoor channels: A communication-theoretic view," IEEE Journal on Selected Areas in Communications, Vol. 20, No. 9, 1613-1627, 2002.
doi:10.1109/JSAC.2002.805031
7. Oestges, C., A. D. Kim, G. Papanicolaou, and A. J. Paulrai, "Characterization of space-time focusing in time-reversed random fields," IEEE Transactions on Antennas and Propagation, Vol. 53, No. 1, 283-293, January 2005.
doi:10.1109/TAP.2004.836399
8. Wertz, P., D. Zimmermann, F. M. Landstorfer, G. Wolfle, and R. Hoppe, "Hybrid ray optical models for the penetration of radio waves into enclosed spaces," 58th IEEE Vehicular Technology Conference, Orlando, FL, October 2003.
9. Yuferev, S. and N. Ida, "Selection of the surface impedance boundary conditions for a given problem," IEEE Transactions on Magnetics, Vol. 35, No. 3, 1486-1489, May 1999.
doi:10.1109/20.767248
10. Leontovich, M. A., "On the approximate boundary conditions for electromagnetic fields on the surface of well conducting bodies," Investigations of Propagation of Radio Waves, 2-20, 1948.
11. Taflove, A. and S. C. Hagness, Computational Electrodynamics: The Finite-difference Time-domain Method, Artech House, 2005.
12. Hua, Y. and T. K. Sarkar, "Matrix pencil method for estimating parameters of exponentially damped/undamped sinusoids in noise," IEEE Transactions on Acoustics, Speech, and Signal Processing, Vol. 38, No. 5, 814-824, 1990.
doi:10.1109/29.56027
13. Beggs, J. H., R. J. Luebbers, K. S. Yee, and K. S. Kunz, "Finite-difference time-domain implementation of surface impedance boundary conditions," IEEE Transactions on Antennas and Propagation, Vol. 40, No. 1, 49-56, January 1992.
doi:10.1109/8.123352
14. Rao, S. M., D. R. Wilton, and A. W. Glisson, "Electromagnetic scattering by surfaces of arbitrary shape," IEEE Transactions on Antennas and Propagation, Vol. 30, No. 3, 409-418.
doi:10.1109/TAP.1982.1142818
15. Yu, W., R. Mittra, T. Su, Y. Liu, and X. Yang, Parallel Finite-difference Time-domain Method, Artech House, 2006.
16. Gropp, W., E. Lusk, and A. Skjellum, Using MPI: Portable Parallel Programming with the Message-passing Interface, 2nd Ed., MIT Press, 1999.