Vol. 10
Latest Volume
All Volumes
PIERM 130 [2024] PIERM 129 [2024] PIERM 128 [2024] PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2009-12-16
Accurate Synthesis Formulas Obtained by Using a Differential Evolution Algorithm for Conductor-Backed Coplanar Waveguides
By
Progress In Electromagnetics Research M, Vol. 10, 71-81, 2009
Abstract
In this paper, accurate synthesis formulas obtained by using a differential evolution (DE) algorithm for conductor-backed coplanar waveguides (CBCPWs) are presented. The synthesis formulas are useful to microwave engineers for accurately calculating the physical dimensions of CBCPWs. The results of the synthesis formulas are compared with the theoretical and experimental results available in the literature. A full-wave electromagnetic simulator IE3D and experimental results are obtained in this work. The average percentage error of the synthesis formulas obtained by using DE algorithm is computed as 0.67% for 1086 CBCPW samples having different electrical parameters and physical dimensions, as compared with the results of quasi-static analysis.
Citation
Sabri Kaya, Kerim Guney, Celal Yildiz, and Mustafa Turkmen, "Accurate Synthesis Formulas Obtained by Using a Differential Evolution Algorithm for Conductor-Backed Coplanar Waveguides," Progress In Electromagnetics Research M, Vol. 10, 71-81, 2009.
doi:10.2528/PIERM09111907
References

1. Nguyen, C., Analysis Methods for RF, Microwave, and Millimeter-wave Planar Transmission Line Structures, John Wiley and Sons, 2000.
doi:10.1002/0471200670

2. Simons, R. N., Coplanar Waveguide Circuits, Components and Systems, John Wiley and Sons, 2001.
doi:10.1002/0471224758

3. Shih, Y. C., "Broadband characterization of conductor-backed coplanar waveguide using accurate on-wafer measurement techniques," Microwave Journal, Vol. 34, 95-105, 1991.

4. Shih, Y. C. and T. Itoh, "Analysis of conductor-backed coplanar waveguide," Electronic Letters, Vol. 18, 538-540, 1982.
doi:10.1049/el:19820365

5. Ghione, G. and C. U. Naldi, "Parameters of coplanar waveguides with lower ground plane," Electronic Letters, Vol. 19, 734-735, 1983.
doi:10.1049/el:19830500

6. Ghione, G. and C. U. Naldi, "Coplanar waveguides for MMIC applications: Effect of upper shielding, conductor backing, finite-extent ground planes, and line-to-line coupling," IEEE Transactions on Microwave Theory and Techniques, Vol. 35, 260-267, 1987.
doi:10.1109/TMTT.1987.1133637

7. Cheng, K. K. M. and J. K. A. Everard, "A new technique for the quasi-TEM analysis of conductor-backed coplanar waveguide structures," IEEE Transactions on Microwave Theory and Techniques, Vol. 41, 1589-1592, 1993.
doi:10.1109/22.245682

8. Tien, C. C., C. K. C. Tzuang, S. T. Peng, and C. C. Chang, "Transmission characteristics of finite-width conductor-backed coplanar waveguide," IEEE Transactions on Microwave Theory and Techniques, Vol. 41, No. 9, 1616-1624, 1993.
doi:10.1109/22.245687

9. Neto, A. G., C. S. D. Rocha, D. Bajon, and H. Baudrand, "Analysis of the conductor-backed coplanar waveguide by an alternative formulation of the transverse resonance technique," SBMO/IEEE MTT-S Int., 851-855, 1995.
doi:10.1109/SBMOMO.1995.509726

10. Huang, J. F. and C. W. Kuo, "More investigations of leakage and nonleakage conductor-backed coplanar waveguide," IEEE Transactions on Electromagnetic Compatibility, Vol. 40, No. 3, 257-261, 1998.
doi:10.1109/15.709424

11. Hotta, M., Y. Qian, and T. Itoh, "Efficient FDTD analysis of conductor-backed CPW's with reduced leakage loss," IEEE Transactions on Microwave Theory and Techniques, Vol. 47, 1585-1587, 1999.
doi:10.1109/22.780412

12. Yildiz, C. and M. Turkmen, "Synthesis formulas for conductor-backed coplanar waveguide," Microwave and Optical Technology Letters, Vol. 50, No. 4, 1115-1117, 2008.
doi:10.1002/mop.23304

13. Price, K., "Differential evolution: A fast and simple numerical optimizer," IEEE North American Fuzzy Info. Process. Conf., 524-527, Berkeley, CA, 1996.

14. Storn, R. and K. Price, "Differential evolution: A simple and efficient heuristic for global optimization over continuous spaces," Journal of Global Optimization, Vol. 11, 341-359, 1997.
doi:10.1023/A:1008202821328

15. Michalski, K. A., "Electromagnetic imaging of circular cylindrical conductors and tunnels using a differential evolution algorithm," Microwave and Optical Technology Letters, Vol. 27, 330-334, 2000.
doi:10.1002/1098-2760(20001205)27:5<330::AID-MOP13>3.0.CO;2-H

16. Qing, A., "Electromagnetic inverse scattering of multiple two-dimensional perfectly conducting objects by the differential evolution strategy," IEEE Transactions on Antennas and Propagation, Vol. 51, 1251-1262, 2003.
doi:10.1109/TAP.2003.811492

17. Luo, X. F., P. T. Teo, A. Qing, and C. K. Lee, "Design of double-square-loop frequency-selective surfaces using differential evolution strategy coupled with equivalent-circuit model," Microwave and Optical Technology Letters, Vol. 44, 159-162, 2005.
doi:10.1002/mop.20575

18. Luo, X. F., A. Qing, and C. K. Lee, "Application of the differential-evolution strategy to the design of frequency-selective surfaces," Int. J. RF and Microwave CAE, Vol. 15, 173-180, 2005.

19. Yildiz, C., A. Akdagli, and M. Turkmen, "Simple and accurate synthesis formulas obtained by using a differential evolution algorithm for coplanar strip lines," Microwave and Optical Technology Letters, Vol. 48, 1133-1137, 2006.
doi:10.1002/mop.21559

20. Guney, K., C. Yildiz, S. Kaya, and M. Turkmen, "New and accurate synthesis formulas for multilayer homogeneous coupling structure," Microwave and Optical Technology Letters, Vol. 49, 2486-2489, 2007.
doi:10.1002/mop.22743

21. Guney, K., C. Yildiz, S. Kaya, and M. Turkmen, "Synthesis formulas for multilayer homogeneous coupling structure with ground shielding," Journal of Electromagnetic Waves and Applications, Vol. 21, No. 14, 2073-2084, 2007.
doi:10.1163/156939307783152786

22. Guney, K., C. Yildiz, S. Kaya, and M. Turkmen, "Synthesis formulas for microcoplanar striplines," Microwave and Optical Technology Letters, Vol. 50, 2884-2888, 2008.
doi:10.1002/mop.23823

23. Guney, K., C. Yildiz, S. Kaya, and M. Turkmen, "New and accurate synthesis formulas for asymmetric coplanar stripline with an infinitely wide strip," Journal of Infrared, Millimeter and Terahertz Waves, Vol. 50, 109-116, 2009.
doi:10.1007/s10762-008-9443-9

24. Zeland Software Inc., IE3D, Version 12.12, www.zeland.com, 2007.