Vol. 10
Latest Volume
All Volumes
PIERM 130 [2024] PIERM 129 [2024] PIERM 128 [2024] PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2010-01-05
Analysis of Complex Antenna Around Electrically Large Platform Using Iterative Vector Fields and UTD Method
By
Progress In Electromagnetics Research M, Vol. 10, 103-117, 2009
Abstract
A new efficient technique for the analysis of complex antenna around a scatterer is proposed in this paper, termed the iterative vector fields with uniform geometrical theory of diffraction (UTD) technique. The complex field vector components on the closed surface enclosing the antenna without platform are computed by higher order Method of Moments (MOM), and the scattered fields from the platform are calculated by UTD method. The process of iteration is implemented according to the equivalence theorem. Based on this approach, an approximation method is outlined, in which the computational time is saved largely, while the accuracy is not reduced. The relative patterns obtained from the present method and the approximation method both show good agreements with that obtained from MOM.
Citation
Zhi-Li He, Kai Huang, and Chang-Hong Liang, "Analysis of Complex Antenna Around Electrically Large Platform Using Iterative Vector Fields and UTD Method," Progress In Electromagnetics Research M, Vol. 10, 103-117, 2009.
doi:10.2528/PIERM09111802
References

1. Li, X.-F., Y.-J. Xie, and R. Yang, "High-frequency method analysis on scattering from homogenous dielectric objects with electrically large size in half space," Progress In Electromagnetics Research B, Vol. 1, 177-178, 2008.
doi:10.2528/PIERB07103001

2. Thiele, G. and T. Newhouse, "A hybrid technique for combining moment methods with the geometrical theory of diffraction," IEEE Trans. Antennas Propagat., Vol. 23, No. 1, 62-69, 1975.
doi:10.1109/TAP.1975.1141004

3. Zhang, P.-F., S.-X. Gong, and S.-F. Zhao, "Fast hybrid FEM/CRE-UTD method to compute the radiation pattern of antennas on large carriers ," Progress In Electromagnetics Research, Vol. 89, 75-84, 2009.
doi:10.2528/PIER08112506

4. Chou, H.-T. and H.-T. Hsu, "Hybridization of simulation codes based on numerical high and low frequency techniques for the e±cient antenna design in the presence of electrically large and complex structures ," Progress In Electromagnetics Research, Vol. 78, 173-187, 2008.
doi:10.2528/PIER07091104

5. Chen, M., X.-W. Zhao, and C.-H. Liang, "Analysis of antenna around NURBS surface with iterative MOM-PO technique," Journal of Electromagnetic Waves and Applications, Vol. 20, No. 12, 1667-1680, 2006.
doi:10.1163/156939306779292372

6. Lei, J.-Z., C.-H. Liang, W. Ding, and Y. Zhang, "Analysis of airborne phased-array antennas using hybrid method of parallel FDTD and UTD," Chinese Journal of Radio Science, Vol. 24, No. 1, 2009.

7. Wang, M., C.-H. Liang, and Y. Zhang, "Combining UTD with MM for pattern prediction of the antenna in complex environment," Chinese Journal of Radio Science, Vol. 22, No. 3, 508-512, 2007.

8. Zhang, Y., X.-W. Zhao, M. Chen, and C.-H. Liang, "An efficient MPI virtual topology based parallel, iterative MOM-PO hybrid method on PC clusters," Journal of Electromagnetic Waves and Applications, Vol. 20, No. 5, 661-676, 2006.
doi:10.1163/156939306776137782

9. HOBIES user manual, OHRN Enterprises, Inc., Syracuse, New HOBIES user manual, OHRN Enterprises, Inc., Syracuse, New York, 2006, http://lcs.syr.edu/faculty/sarkar/softw.asp#hobies.

10. Zhang, Y. and T. K. Sarkar, Parallel Solution of Integral Equation Based EM Problems in the Frequency Domain, Wiley-IEEE Press, 2009.

11. Zhang, Y., M. Taylor, T. Sarkar, H. Moon, and M. Yuan, "Solving large complex problems using a higher-order basis: Parallel incore and out-of-core integral-equation solvers," IEEE Antennas and Propagation Magazine, Vol. 50, No. 4, 1-30, Aug. 2008.
doi:10.1109/MAP.2008.4653650

12. Zhao, X. W. and C.-H. Liang, "Performance comparison between two commercial EM software using higher order and piecewise RWG basis functions ," Microwave Opt. Technol. Lett., Vol. 51, 1219-1225, 2009.
doi:10.1002/mop.24271

13. Kouyoumjian, R. G. and P. H. Pathak, "A uniform geometrical theory of di®raction for an edge in a perfectly-conducting surface," Proc. IEEE, Vol. 62, 1448-1461, 1974.
doi:10.1109/PROC.1974.9651

14. Pathak, P. H., W. D. Burnside, and R. J. Marheflca, "A uniform GTD analysis of the diffraction of electromagnetic waves by a smooth convex surface," IEEE Trans. Antennas Propagat., Vol. 28, No. 5, 631-642, Sep. 1980.
doi:10.1109/TAP.1980.1142396

15. Branko, M. K., "Electromagnetic modeling of composite metallic and dielectric structures ," IEEE Trans. Microwave Theory and Techniques, Vol. 47, No. 7, Jul. 1999.

16. Chou, H.-T. and H.-K. Ho, "Implementation of a forwardbackward procedure for the fast analysis of electromagnetic radiation/scattering from two-dimensional large phased arrays ," IEEE Trans. Antennas Propagat., Vol. 52, No. 2, 388-396, 2004.
doi:10.1109/TAP.2004.823886