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Abstract—A new efficient technique for the analysis of complex
antenna around a scatterer is proposed in this paper, termed the
iterative vector fields with uniform geometrical theory of diffraction
(UTD) technique. The complex field vector components on the closed
surface enclosing the antenna without platform are computed by
higher order Method of Moments (MOM), and the scattered fields
from the platform are calculated by UTD method. The process of
iteration is implemented according to the equivalence theorem. Based
on this approach, an approximation method is outlined, in which
the computational time is saved largely, while the accuracy is not
reduced. The relative patterns obtained from the present method
and the approximation method both show good agreements with that
obtained from MOM.

1. INTRODUCTION

Numerical techniques for calculation of electromagnetic fields can
be favorably divided into accurate methods and high-frequency or
asymptotic methods. Accurate methods are high in precision, but
the requirements of computational resource increase greatly with the
scale of mesh especially in solving electrically large problems. High-
frequency method [1] is widely used to solve electrically large problems,
but the accuracy is not satisfying. It is well-known that hybridization
of two-field calculation techniques belonging to different groups [2–
5] has great potential to increase the capabilities of the individual
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methods. Actually many hybrid methods have emerged. The iterative
MOM-PO (Physical-optics) technique was proposed to analyze the
antenna around NURBS surface [5], while it has not been applied
to analyze complex antenna. Hybrid FDTD/UTD was applied to
analyze phased array antennas mounted on airborne platform in [6].
Combining UTD with MOM was used to calculate the pattern of
the antenna in complex environment in [7]. The effect of platform
on the current distribution on antenna has been neglected in [6, 7]
supposing that antenna is far away from the platform. It’s obvious
that the methods are decoupled. And the hybrid MOM-PO method
based parallel was proposed in [8] to deduce the computational time.
Commercial software HOBIES [9–11] (Higher-order Basis functions
based Integral Equation Solver), is a general purpose Frequency
Domain Electromagnetic integral equation solver. HOBIES provides
solutions based on MoM employing higher order basis functions. The
use of higher order basis functions substantially reduces the number
of unknowns, reducing the problem size and hence the total solution
time [12]. Even if the efficiency has been enhanced, it needs unbearable
hardware requirements in solving electronically large problems. When
analyzing EMC problems of electrically large platforms, UTD [13, 14]
method is widely used and reasonably effective. Based on ray solutions,
UTD is an efficient high-frequency method, which is utilized to
calculate the scattered field from electrically large platform in this
paper.

In this paper, an iterative vector fields and UTD method is
presented to analyze the radiation pattern of complex antenna around
electrically large platform. We consider full coupling between antenna
and platform through iterating Huygens’ surface currents instead of the
conventional MOM-UTD process of modifying the impedance matrix
of MoM with UTD. The results obtained from the present method
and the approximation method both show good agreements with that
obtained from MOM, which shows the validity and accuracy of this
approach.

2. HIGHER ORDER MOM (HOBIES)

Commercial software HOBIES solves the integral equation utilizing
higher order MoM. As the name suggests, higher order MOM
uses both higher order geometric surfaces and higher order basis
functions [12, 15].
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Figure 1. A truncated cone. Figure 2. Bilinear patch defined by
four position vectors and vertices.

2.1. Higher Order Surfaces

A right-truncated cone is determined by position vectors ⇀
r 1,

⇀
r 2 and the

radii of its beginning and end a1, a2, as shown in Fig. 1. Generalized
wires can be approximated by right-truncated cones. The parametric
equation of the cone surface can be written as

⇀
ra (φ, s) = ⇀

ra (s) + a (s) îρ (φ) , −1 ≤ s ≤ 1, −π ≤ φ ≤ π (1)

where φ and s are parameters of the cone surface, φ is the
circumferential angle, measured from the x-axis, s is measured along
generatrix from the beginning to the end, and îρ(φ) is the radial unit
vector perpendicular to the cone axis.

Bilinear surface is applied in commercial software HOBIES. The
two parameters of which a bilinear surface consists are p and s-
components, as shown in Fig. 2. The parametric equation of such
an isoparametric element can be written in the following form:

⇀
r (p, s) = ⇀

r 11
(1−p) (1−s)

4
+ ⇀

r 12
(1−p) (1+s)

4
+ ⇀

r 21
(1+p) (1−s)

4

+⇀
r 22

(1 + p) (1 + s)
4

, −1 ≤ p ≤ 1, −1 ≤ s ≤ 1 (2)

where ⇀
r 11,

⇀
r 12,

⇀
r 21 and ⇀

r 22 are the position vectors of its vertices, and
p and s are the local coordinates.
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2.2. Higher Order Basis Functions

Currents along wires are approximated by polynomials and can be
written as

I (s) = I1N (s) + I2N (−s) +
Ns∑

i=2

aiSi (s) (3)

where node basis function N(s) and segment basis functions Sj(s),
(i = 2, 4, . . . Ns) are expressed as

N (s) =
1− s

2
, Si (s) =

{
si − 1, i is even
si − s, i is odd (4)

respectively. ai (i = 2, 4, . . . Ns) are the coefficients, and I1, I2 are the
values of the currents at two wire ends, respectively.

The surface current over a bilinear surface is decomposed into its
p and s-components, which is expressed as:

⇀

Js = Jssŝ + Jspp̂ (5)
The p-current component can be treated as the s-current

component defined over the same bilinear surface with an interchange
of the p and s coordinates. The approximations for the s-components of
the electric and magnetic currents over a bilinear surface are typically
defined by:

Jss (p, s) ŝ ≈
Np∑

i=0


Ci1

⇀

Ei (p, s) + Ci2

⇀

Ei (p,−s) +
Ns∑

j=2

aij

⇀

P ij (p, s)


 (6)

where Ci1 and Ci2 (i = 0, 1, 2, . . . Np) are respectively defined by

Ci1 =
Ns∑

j=0

aij (−1)j , Ci2 =
Ns∑

j=0

aij (7)

The edge basis functions
⇀

Ei(p, s) and the patch basis functions
⇀

P ij(p, s) (i = 0, 1, 2, . . . Np), (j = 2, 4, . . . Ns) are expressed as

⇀

Ei (p, s)=
∂

⇀
r (p,s)
∂s∣∣∣∣∂

⇀
r (p,s)
∂p × ∂

⇀
r (p,s)
∂s

∣∣∣∣
piN (s) ,

⇀

P ij (p, s)=
∂

⇀
r (p,s)
∂s∣∣∣∣∂

⇀
r (p,s)
∂p × ∂

⇀
r (p,s)
∂s

∣∣∣∣
piSj (s)

(8)

The detailed presentation and discussion of
⇀

Ei (p, s) and
⇀

P ij (p, s) can
be found from Equations (16)–(19) in Section 3 of Ref. [15].
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3. CALCULATION OF THE REFLECTED AND
DIFFRACTED ELECTROMAGNETIC FIELDS BY UTD
METHOD

Supposing the incidence fields are known, the formulas for reflected and
diffracted electromagnetic fields in UTD method are given as follows.

Decompose the incidence fields into two components:



⇀

E
i
= êi

//E
i
// + êi

⊥Ei
⊥

⇀

H
i
= êi

//H
i
⊥ + êi

⊥H i
//

(9)

where the unit vector perpendicular to the plane of incidence is denoted
by êi

⊥, and the parallel by êi
//. Ei

//, H i
// are the components parallel

to the plane of incidence, and Ei
⊥, H i

⊥ are the ones perpendicular to
the plane.

The reflected fields can be expressed as:



⇀

E
r (⇀

r
) ∼ ⇀

E
i
(QR) ·R

√
ρr
1ρr

2

(ρr
1+sr)(ρr

2+sr)e
−jksr

⇀

H
r (⇀

r
) ∼ ⇀

H
i
(QR) ·R

√
ρr
1ρr

2

(ρr
1+sr)(ρr

2+sr)e
−jksr

(10)

where QR stands for the reflection point, ρr
1, ρr

2 are the principal radii
of curvatures of reflected wavefront surface at QR, sr is the distance
along the reflected ray from QR to field point, and k is the wavenumber
in given medium, ⇀

r is the field point vector. The expression of ¯̄R,
dyadic reflection coefficient, is

R = Rsê
i
⊥êr

⊥ + Rhêi
//ê

r
// (11)

in which the unit vector perpendicular to the plane of reflection is
denoted by êr

⊥, the parallel by êr
//, and Rs, Rh are the soft and hard

reflection coefficients.
The diffracted fields are denoted as:




⇀

E
d (⇀

r
) ∼ ⇀

E
i
(QE) ·DA

(
s, sd

)
e−jksd

⇀

H
d (⇀

r
) ∼ ⇀

H
i
(QE) ·DA

(
s, sd

)
e−jksd

(12)

where QE is the point of diffraction, that is determined using the
generalized Fermat’s principle, A(s, sd) is the spatial attenuation factor
depending on sd and the local nature of the diffracting surface at QE , s
means the distance between source point and QE , and sd is the distance
from QE to observation point, e−jks is the phase factor. The dyadic
diffraction coefficient, ¯̄D can be expressed as the sum of two dyads

D = −Dsê
i
⊥êd

⊥ −Dhêi
//ê

d
// (13)
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Figure 3. Modal of iteration.

where the unit vector perpendicular to the plane of diffraction is
denoted by êd

⊥, the parallel by êd
//, and Ds, Dh are the soft and hard

diffraction coefficients.
For any observation point ⇀

r in lit region, the total scattered fields
are:

⇀

Es

(⇀
r
)

=
⇀

E
r (⇀

r
)

+
⇀

E
d (⇀

r
)
, and

⇀

Hs

(⇀
r
)

=
⇀

H
r (⇀

r
)

+
⇀

H
d (⇀

r
)

(14)

while in dark region
⇀

Es

(⇀
r
)

=
⇀

E
d (⇀

r
)
, and

⇀

Hs

(⇀
r
)

=
⇀

H
d (⇀

r
)
. (15)

Whether smooth convex surface or wedge, the above equations
are applicable. The expressions of Rs, Rh and Ds, Dh can be obtained
from references [13, 14].

4. MODIFYING THE ELECTRIC AND MAGNETIC
CURRENTS OVER THE CLOSED SURFACE

Antenna is set as the MOM region and the platform as the UTD region
in present approach. The system composed of platform and antenna
will undergo a short-lived interaction when the latter is motivated. As
shown in Fig. 3, the antenna practically motivated is enclosed by a
closed surface S. The action of platform on antenna is transferred to
the equivalent surface currents on S.

1). According to the equivalence theorem, determination of total
electromagnetic field inside and outside S can be decomposed into
two parts which can be analyzed separately. When the field outside
surface S is considered, the field inside S equals to zero. To maintain
the radiation of antenna outside S, it’s necessary to induce electric
and magnetic currents

⇀

Js and
⇀

M s in order to satisfy the continuity
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condition of the field. The field outside S is uniquely determined
by sources outside S and the equivalent currents placed on it, whose
expressions are:

⇀

MS =
⇀

E × n̂,
⇀

JS = n̂× ⇀

H (16)

where n̂ is the outward unit normal vector on S,
⇀

E and
⇀

H are
the fields on S produced by antenna without platform. Taking the
electromagnetic field outside S as the research target, the antenna can
be replaced by the currents placed on S. Once

⇀

Js and
⇀

M s are obtained,
the antenna can be considered inexistent. The action of the platform
on the antenna is transferred on the equivalent currents. So the method
avoids the general process of modifying the MoM impedance matrix.

Theoretically, arbitrary shape closed surface can be used as S. For
mathematical tractability, a cube is selected. Its six plane surfaces are
all uniformly divided into small squares numbered with 1, 2 . . . N . The
side length of a square is about 1/10λ. The center of the ith square
is regard as the ith sampling point (SP), at which the field produced
by antenna without platform can be obtained by HOBIES, denoted by
⇀

E
Dir

i and
⇀

H
Dir

i , where the superscript Dir represents the direct field,
and the subscript i stands for the ith SP. Thus, the initial currents at
the ith SP are:

⇀

MSi (0) =
⇀

E
Dir

i × n̂,
⇀

JSi (0) = n̂× ⇀

H
Dir

i (17)

2) It is well known that the vector potential is:

⇀

A
(⇀
r
)

=
µ

4π

∫∫

S

⇀

J
(

⇀
r
′) e−jkR

R
ds′ (18)

where R means the distance between the source location ⇀
r
′

and
observation point ⇀

r , S is the source region. According to the definition
of

⇀

A(⇀
r ): ∇× ⇀

A =
⇀

B, the magnetic field produced by electric current
density

⇀

J(⇀
r
′
) over region S is:

⇀

HJ

(⇀
r
)

=
1
4π

∫∫

S

(
1 + jkR

R3

)
e−jkR

[
⇀

J
(

⇀
r
′)× ⇀

R
]
ds′ (19)

where the superscript J represents the field produced by electric
currents. Then substituting Equation (19) into Maxwell equation
∇ × ⇀

H = jωε
⇀

E, the electric field produced by electric currents is
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obtained through several simply algebraic steps:
⇀

EJ =
−j

4πωε

∫∫

S

{
k2R2 − 3jkR− 3

R5
e−jkR

{
⇀

R×
[

⇀

J
(

⇀
r
′)× ⇀

R
]}

+
(

1 + jkR

R3

)
e−jkR · 2⇀

J
(

⇀
r
′)}

ds′ (20)

where ω is angular frequency, ε is permittivity. The electric field
produced by magnetic currents can be obtained by Equation (19)
according to the dual theorem. In this case, sampling interval is so
small that both the electric and magnetic currents distributing over
an element are approximately thought uniform, which are equal to the
currents on its center. Therefore, electric field produced by the ith
surface element is approximated to:

⇀

Ei

(⇀
r
) ≈ je−jkRi0∆s

4πωε
·
{

k2R2
i0 − 3jkRi0 − 3

R5
i0

·
[

⇀

Jsi ×
⇀

Ri0 ×
⇀

Ri0

]

−2
⇀

Jsi ·
[
1 + jkRi0

R3
i0

]}
− ∆s

4π

{
1 + jkRi0

R3
i0

e−jkRi0

[
⇀

M si ×
⇀

Ri0

]}
(21)

where ∆s is the area of a small square,
⇀

Ri0 is the vector from the ith
SP to the observation point, and Ri0 = |⇀Ri0|. According to the dual
theorem, relevant magnetic field vector can be deduced easily.

3) The ith SP is taken as the source point of UTD region, and

the jth one as observation point, the scattered fields denoted as
⇀

E
s

ji

and
⇀

H
s

ji are computed according to the UTD algorithm, where the
superscript s represents the scattered field. For any j ∈ [1, N ], sum

vectors
⇀

E
s

j =
N∑

i=1

⇀

E
s

ji,
⇀

H
s

j =
N∑

i=1

⇀

H
s

ji are the total scattered field vectors

at the jth SP. To maintain the field inside S be zero, it’s necessary to
induce new currents:

∆
⇀

MSj =
⇀

E
s

j × (−n̂) , ∆
⇀

JSj = (−n̂)× ⇀

H
s

j (22)
⇀

JSj (k) ,
⇀

MSj (k) are supposed as the currents at the jth SP after the
kth iteration, the ones after the k + 1th iteration will be:

{ ⇀

MSj (k + 1) =
⇀

MSj (k) +
⇀

E
s

j(k) × (−n̂)
⇀

JSj (k + 1) =
⇀

JSj (k) + (−n̂)× ⇀

H
s

j(k)

(23)

in which
⇀

E
s

j(k) and
⇀

H
s

j(k) stand for the vectors produced by the currents
after the kth iteration. When the new currents are obtained, repeat



Progress In Electromagnetics Research M, Vol. 10, 2009 111

steps 2) and 3) until the conditions:
∥∥∥⇀

Js (k + 1)− ⇀

Js (k)
∥∥∥

∥∥∥⇀

Js (k)
∥∥∥

≤ ∆,

∥∥∥ ⇀

M s (k + 1)− ⇀

M s (k)
∥∥∥

∥∥∥ ⇀

M s (k)
∥∥∥

≤ ∆ (24)

are satisfied, where ∆ is the threshold of iteration-ceasing, which is set
as 10−5 in this paper, ‖ · ‖ denotes the 2-norm of a complex vector.

4) After the iteration cuts-off, taking the final currents on each SP
as point sources, calculate the total scattered field at the observation
point in far field region according to UTD algorithm. Adding the
scattered field and the direct field without being sheltered, the total
field can be obtained.

For saving computational time, we suppose the rays are emitted
from the center of the cube because of its centre-symmetry. Thus for
each observation point, reflection ray-tracing and shelter-judgment are
respectively implemented only once, so does the diffraction case. The
incidence field is precise, i.e., the summation of fields produced by
each element. Based on this approximation, the computational time is
reduced greatly, while the results are satisfying, which can be confirmed
in Section 5.

5. NUMERICAL RESULTS AND ANALYSIS

In this section, all the examples are solved on a PC having a Pentium
P4 3.0 GHz CPU, 1.0 GB RAM, and a 32-bit operating system called
Microsoft Windows XP SP2.

5.1. Monopole Antenna Placed on a Pentagonal Plate with
a Cylinder

As shown in Fig. 4, a monopole antenna toward (0, 0, 1) is placed on
a pentagonal plate with a frequency of 300 MHz, whose dimensional
extensions are: x : [−0.286, 0.354], y : [−0.336, 0.336] and z : [0.0, 0.25].
The length of the monopole is λ/4. Closed surface is chosen as the cube
centered at the origin, whose length of side is 0.90 m (0.9λ). The two
centers of base surfaces of the cylinder scatterer are (4.0,−3.0,−3.0),
(4.0,−3.0, 3.0), and the radii of which is 2 m. The six surfaces of the
cube are all divided into 9 × 9 small squares. By six iterations, the
final results of radiation pattern of the xoy plane and the yoz plane
are shown in Figs. 5(a) and (b), both agree very well with the ones
obtained by MOM.



112 He, Huang, and Liang

Closed Surface

Antenna

Cylinder

y

z

x

y

z

x

Monopole

 

Figure 4. Monopole antenna placed on a pentagonal plate with a
cylinder.
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Figure 5. Results of radiation from monopole on a pentagonal plate
near a cylinder. (a) Radiation pattern of the xoy plane. (b) Radiation
pattern of the yoz plane.

5.2. LDPA with a Plate

The structure of Log-periodical dipole antenna (LDPA) with the
working frequency of 700 MHz is shown in the inset of Fig. 6. Its
three dimensional bounds are: x : [0.139467, 0.7325], y : [−0.25, 0.25],
z : [−0.02, 0.02] (m). A cube centered at (0.4, 0, 0), whose side length
is 0.8m, is chosen as the closed surface. Its six plane surfaces are all
divided into 20× 20 small squares. The plate is centered at (−5, 0, 0),
whose sizes are shown in Fig. 6. It is placed parallel to the yoz
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Figure 6. LDPA near a plate scatterer.

Figure 7. The modal of the airborne dipole phased array.

plane. Whether rigorous ray-tracing method or center ray-tracing
approximation method, convergent solution can be obtained by five
iterations in this example. It is worth noting that the two methods
both converge in a few iterations.

The final results of radiation pattern in xoy and yoz plane by
two iterative approaches, rigorous ray-tracing and approximate center
ray-tracing, both agree very well with the ones obtained by higher
order MOM shown in Figs. 8(a) and (b). In the yoz plane, the results
within 258◦−268◦ and 272◦−282◦ are not accurate, and the most error
is 3.6 dB. And the computing time respectively are 11258 seconds and
389 seconds. It’s obviously to see that, comparing to the rigorous ray-
tracing method, the center ray-tracing approximate method uses much
less computational time, while the results are satisfying.
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Figure 8. Results of radiation from LDPA near a plate. (a) Radiation
pattern of the xoy plane. (b) Radiation pattern of the yoz plane.

5.3. Analysis of the Airborne Phase Array Antenna

The dipole array described in Ref. [16] is located below an airplane in
the distance of 5λ, with the working frequency 2.0 GHz, as shown in
Fig. 7. The local modal of the dipole array is shown in the inset of
Fig. 7. We consider a 41× 41 thin (radius equals 0.01λ), short (length
amount to 0.2λ) and ŷ-directed dipole array, whose elements are phased
to radiate a beam maximum in the direction of (θ = 60◦, ϕ = 45◦). The
array has a period of 0.3λ and 0.6λ in x and y coordinates respectively,
and is excited uniformly in amplitude. The total length of the airframe
is 22.974m (about 153.16λ). A cube whose side length is 3.75 m is
chosen as the closed surface, the center of which is located at the
point (0, 0,−3.5) under global coordinate. Its six plane surfaces are all
divided into 250× 250 small squares uniformly.

The convergent solutions are obtained by four iterations. The
three-dimensional gain (dB) pattern is given in Fig. 9(a) and the
normalized disturbed pattern of the airborne phase array is shown in
(b). The disturbed pattern is calculated by the approximate center ray-
tracing method. Because of the disturbance of airplane, the pattern
changes largely. Obviously, the field above the airplane becomes
smaller as a result of the shelter and reflection from airframe and airfoil,
while below the plane strengthened. The radiation pattern of the
complex antenna around electrically large platform can be effectively
calculated using present method.
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(a) (b)

Figure 9. (a) Gain pattern of the dipole array (dB). (b) The
normalized disturbed radiation pattern of the airborne phase array
antenna.

From the examples above, we can see that both the rigorous
ray-tracing method and center ray-tracing approximate method
convergence in a few iterating times. It seems that the smaller the
electrical distance between platform and surface, the stronger the
scattered fields produced by the platform, so the greater the influence
to the equivalent currents and more iterating times that needed to
reach the convergence. However, the problem is complex in practice.
The iterating times should be dependent on not only the distance
between antenna and platform but also the radiation direction, the
electric size of the scatterer, the posture of the antenna relative to the
scatterer etc. Therefore, such a conclusion should be futher studied.

6. CONCLUSION

This paper has proposed an iterative method, which employs HOBIES
to compute complex field vector components over the closed surface
near the antenna without platform, and iteriates the equivalent electric
and magnetic currents by UTD method. Since the ray-tracing of UTD
method is time-consuming, the paper has presented an approximate
method. Three examples are given, and the results obtained from
present methods and from pure MoM approach agree very well. The
examples have demonstrated the advantages of this method over the
commonly hybrid methods, especially when the antenna is complex.
Considering the action of platform on the currents distribution along
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antenna, the results are more appropriate than the ones obtained in
references [6, 7]. The approach presented in this paper might be very
useful in practical engineering.
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