Vol. 19
Latest Volume
All Volumes
PIERB 109 [2024] PIERB 108 [2024] PIERB 107 [2024] PIERB 106 [2024] PIERB 105 [2024] PIERB 104 [2024] PIERB 103 [2023] PIERB 102 [2023] PIERB 101 [2023] PIERB 100 [2023] PIERB 99 [2023] PIERB 98 [2023] PIERB 97 [2022] PIERB 96 [2022] PIERB 95 [2022] PIERB 94 [2021] PIERB 93 [2021] PIERB 92 [2021] PIERB 91 [2021] PIERB 90 [2021] PIERB 89 [2020] PIERB 88 [2020] PIERB 87 [2020] PIERB 86 [2020] PIERB 85 [2019] PIERB 84 [2019] PIERB 83 [2019] PIERB 82 [2018] PIERB 81 [2018] PIERB 80 [2018] PIERB 79 [2017] PIERB 78 [2017] PIERB 77 [2017] PIERB 76 [2017] PIERB 75 [2017] PIERB 74 [2017] PIERB 73 [2017] PIERB 72 [2017] PIERB 71 [2016] PIERB 70 [2016] PIERB 69 [2016] PIERB 68 [2016] PIERB 67 [2016] PIERB 66 [2016] PIERB 65 [2016] PIERB 64 [2015] PIERB 63 [2015] PIERB 62 [2015] PIERB 61 [2014] PIERB 60 [2014] PIERB 59 [2014] PIERB 58 [2014] PIERB 57 [2014] PIERB 56 [2013] PIERB 55 [2013] PIERB 54 [2013] PIERB 53 [2013] PIERB 52 [2013] PIERB 51 [2013] PIERB 50 [2013] PIERB 49 [2013] PIERB 48 [2013] PIERB 47 [2013] PIERB 46 [2013] PIERB 45 [2012] PIERB 44 [2012] PIERB 43 [2012] PIERB 42 [2012] PIERB 41 [2012] PIERB 40 [2012] PIERB 39 [2012] PIERB 38 [2012] PIERB 37 [2012] PIERB 36 [2012] PIERB 35 [2011] PIERB 34 [2011] PIERB 33 [2011] PIERB 32 [2011] PIERB 31 [2011] PIERB 30 [2011] PIERB 29 [2011] PIERB 28 [2011] PIERB 27 [2011] PIERB 26 [2010] PIERB 25 [2010] PIERB 24 [2010] PIERB 23 [2010] PIERB 22 [2010] PIERB 21 [2010] PIERB 20 [2010] PIERB 19 [2010] PIERB 18 [2009] PIERB 17 [2009] PIERB 16 [2009] PIERB 15 [2009] PIERB 14 [2009] PIERB 13 [2009] PIERB 12 [2009] PIERB 11 [2009] PIERB 10 [2008] PIERB 9 [2008] PIERB 8 [2008] PIERB 7 [2008] PIERB 6 [2008] PIERB 5 [2008] PIERB 4 [2008] PIERB 3 [2008] PIERB 2 [2008] PIERB 1 [2008]
2009-12-10
The Propagation Problem in a BI-Isotropic Waveguide
By
Progress In Electromagnetics Research B, Vol. 19, 21-40, 2010
Abstract
We investigate the problem of defining propagating constants and modes in metallic waveguides of an arbitrary cross section, filled with a homogeneous bi-isotropic material. The approach follows the guidelines of the classical theory for the isotropic, homogeneous, lossless waveguide: starting with the Maxwell system, we formulate a spectral problem where the square of the propagation constant shows up as the eigenvalue and the corresponding mode as the eigenvector. The difficulty that arises, and this is a feature of chirality, is that the eigenvalue is involved in the boundary conditions. The main result is that the problem is solvable whenever the Dirichlet problem for the Helmholtz equation in the cross section is solvable and a technical hypothesis is fulfilled. Our method, inspired by the null-field method, is quite general and has a good potential to work in various geometries.
Citation
Andreas D. Ioannidis, Gerhard Kristensson, and Daniel Sjöberg, "The Propagation Problem in a BI-Isotropic Waveguide," Progress In Electromagnetics Research B, Vol. 19, 21-40, 2010.
doi:10.2528/PIERB09111106
References

1. Lakhtakia, A., Beltrami Fields in Chiral Media, World Scientic, 1994.

2. Lindell, I. V., A. H. Sihvola, S. A. Tretyakov, and A. J. Viitanen, Electromagnetic Waves in Chiral and Bi-Isotropic Media, Artech House, 1994.

3. Stratis, I. G., "Electromagnetic scattering problems in chiral media: A review," Electromagnetics, Vol. 19, 547-562, 1999.
doi:10.1080/02726349908908673

4. Olyslager, F., Electromagnetic Waveguides and Transmission Lines, Clarendon Press, 1999.

5. Rayleigh, L., "On the passage of electric waves through tubes, or the vibrations of dielectric cylinders," Phil. Mag., Vol. 43, 125-132, 1897.

6. Collin, R. E., Field Theory of Guided Waves, 2nd edition, IEEE Press, 1991.

7. Waldron, R. A., The Theory of Waveguides and Cavities, Maclaren & Sons, 1967.

8. Yang , T., S. Song, H. Dong, and R. Ba, "Waveguide structures for generation of terahertz radiation by electro-optical process in GaAs and zugep2 using 1.55 μm fiber laser pulses," Progress In Electromagnetics Research Letters, Vol. 2, 95-102, 2008.
doi:10.2528/PIERL07122806

9. Jarem, J. M., "Propagation, excitation, and orthogonality of modes in a parallel plate, anisotropic waveguide using a modified, coordinate transformation," Progress In Electromagnetics Research B, Vol. 15, 151-173, 2009.
doi:10.2528/PIERB08111005

10. Xu, J., W. X. Wang, L. N. Yue, Y. B. Gong, and Y. Y. Wei, "Electromagnetic wave propagation in an elliptical chiroferrite waveguide," Journal of Electromagnetic Waves and Applications, Vol. 23, No. 14-15, 2021-2030, 2009.
doi:10.1163/156939309789932430

11. Eftimiu, C. and L. W. Pearson, "Guided electromagnetic waves in chiral media," Radio Sci., Vol. 24, No. 3, 351-359, 1989.
doi:10.1029/RS024i003p00351

12. Hollinger, R., V. V. Varadan, and V. K. Varadan, "Eigenmodes in circular waveguide containing an isotropic chiral material," Radio Sci., Vol. 26, No. 5, 1335-1344, 1991.
doi:10.1029/91RS00962

13. Pelet, P. and N. Engheta, "The theory of chirowaveguides," IEEE Trans. Antennas and Propagation, Vol. 38, No. 1, 90-98, 1990.
doi:10.1109/8.43593

14. Svedin, J. A. M., "Propagation analysis of chirowaveguides using the finite element method," IEEE Trans. Microwave Theory Tech., Vol. 38, No. 10, 1488-1496, 1990.
doi:10.1109/22.58690

15. Cessenat, M., Mathematical Methods in Electromagnetism: Linear Theory and Applications, World Scientific, 1996.

16. Dautray, R. and J.-L. Lions, "Mathematical Analysis and Numerical Methods for Science and Technology. Vol. 3: Spectral Theory and Applications," Springer, 1990.

17. Jackson, J. D., Classical Electrodynamics, 3rd edition, Wiley, 1999.

18. Kleinman, R. E., G. F. Roach, and S. E. G. Strom, "The null field method and modified Green function," Proc. R. Soc. Lond. A, Vol. 394, 121-136, 1984.

19. Martin, P. A., "On the null-field for water-wave scattering problems," IMA J. Appl. Math., Vol. 33, 55-69, 1984.
doi:10.1093/imamat/33.1.55

20. Bohren, C. F., "Light scattering by an optically active sphere," Chem. Phys. Letters, Vol. 29, 458-462, 1974.
doi:10.1016/0009-2614(74)85144-4

21. Athanasiadis, C., G. Costakis, and I. G. Stratis, "On some properties of Beltrami fields in chiral media," Rep. Math. Phys., Vol. 45, 257-271, 2000.
doi:10.1016/S0034-4877(00)89036-9

22. Reinert, J., G. Busse, and A. F. Jacob, "Waveguide characterization of chiral material: Theory," IEEE Trans. Microwave Theory Tech., Vol. 43, No. 3, 290-296, 1999.
doi:10.1109/22.750227

23. Sjoberg, D., "Determination of propagation constants and material data from waveguide measurements," Progress In Electromagnetics Research B, Vol. 12, 163-182, 2009.
doi:10.2528/PIERB08121304

24. Ioannidis, A. D., D. Sjoberg, and G. Kristensson, "On the propagation problem in a metallic homogeneous bi-isotropic waveguide,", Department of Electrical and Information Technology-Lund University, TEAT-7178, 1-19, 2009. www.eit.lth.se.

25. Colton, D., L. Paivarinta, and J. Sylvester, "The interior transmission problem," Inverse Probl. Imaging, Vol. 1, 13-28, 2007.

26. Colton, D. and R. Kress, Integral Equation Methods in Scattering Theory, John Wiley & Sons, 1983.

27. Evans, L. C., "Partial Differential Equations," American Mathematical Society, 1998.

28. Gohberg, I. C. and M. G. Krein, Introduction to the Theory of Linear Nonselfadjoint Operators, American Mathematical Society, 1969.

29. Millar, R. F., "The Rayleigh hypothesis and a related least-squares solution to scattering problems for periodic surfaces and other scatterers," Radio Sci., Vol. 8, 785-796, 1973.
doi:10.1029/RS008i008p00785

30. Millar, R. F., "On the completeness of sets of solutions to the Helmholtz equation," IMA J. Appl. Math., Vol. 30, 27-37, 1983.
doi:10.1093/imamat/30.1.27

31. Condon, E. U., "Theories of optical rotatory power," Rev. Mod. Phys., Vol. 9, 432-457, 1937.
doi:10.1103/RevModPhys.9.432