Vol. 10
Latest Volume
All Volumes
PIERM 130 [2024] PIERM 129 [2024] PIERM 128 [2024] PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2009-12-08
Study of Mode Propagation in Pseudochiral Transmission Lines
By
Progress In Electromagnetics Research M, Vol. 10, 39-47, 2009
Abstract
In this paper, a generic planar transmission line filled, homogeneously, with a pseudochiral omega medium is considered. It is shown that only a uniaxial omega medium can support TE and TM modes separately. Thus, for such a medium, the fields and modal equations for TE, TM and TEM mode propagation are obtained. The special case of parallel plate waveguide is solved, and the effect of pseudochirality parameter Ω on the propagation constant and cut-off frequency is considered. For TEM propagation, an equivalent circuit is given which is different from the common isotropic transmission line model. Finally, a pseudochiral stripline is analyzed, and the elements of the equivalent circuit are calculated. The results show that the properties of the line vary as the pseudochirality parameter changes.
Citation
Hossein Hatefi-Ardakani, and Jalil Rashed-Mohassel, "Study of Mode Propagation in Pseudochiral Transmission Lines," Progress In Electromagnetics Research M, Vol. 10, 39-47, 2009.
doi:10.2528/PIERM09102008
References

1. Saadoun, M. M. I. and N. Engheta, "A reciprocal phase shifter using novel pseudochiral or omega medium," Microwave Opt. Technol. Lett., Vol. 5, 184-188, 1992.
doi:10.1002/mop.4650050412

2. Tretyakov, S. A. and A. A. Sochava, "A proposed composite material for non-reflecting shields and antenna radomes," Electron. Lett., Vol. 29, 1408-1409, 1993.
doi:10.1049/el:19930699

3. Lindell, I. V. and A. J. Viitanen, "Plane wave propagation in uniaxial bianisotropic medium," Electron. Lett., Vol. 29, 1993.
doi:10.1049/el:19930101

4. Yin, W. Y., W. Wan, X, and Sun, "Mode characteristics in a lossy parallel-plate uniaxial chiro-omega waveguide," Microwave Opt. Technol. Lett., Vol. 7, 868-870, 1994.
doi:10.1002/mop.4650071107

5. Yin, W. Y., W. Wan, and W. Wang, "Mode characteristics in a circular uniaxial chiro-omega waveguide," Electron. Lett., Vol. 30, 1072-1074, 1994.
doi:10.1049/el:19940695

6. Mazur, J. and D. Pietrzak, "Field displacement phenomenon in a rectangular waveguide containing a thin plate of omega medium," IEEE Microwave Guided Wave Lett., Vol. 6, 34-36, 1996.
doi:10.1109/75.482063

7. Topa, A. L., C. R. Paiva, and A. M. Barbosa, "Full-wave analysis of a nonradiative dielectric waveguide with a pseudochiral omega slab," IEEE Trans. Microwave Theory Tech., Vol. 46, 1263-1269, 1998.
doi:10.1109/22.709468

8. Uslenghi, P. L. E., "TE-TM decoupling for guided propagation in bianisotropic media," IEEE Trans. Antennas and propagation, Vol. 45, 284-286, Feb. 1997.
doi:10.1109/8.560347

9. Yamashita, E., "Variational method for the analysis of microstrip-like transmission lines," IEEE Trans. Microwave Theory Tech., Vol. 16, 529-535, 1998.
doi:10.1109/TMTT.1968.1126735

10. Itoh, T., "Spectral domain immitance approach for dispersion characteristics of generalized printed transmission lines," IEEE Trans. Microwave Theory Tech., Vol. 28, 733-736, Jul. 1980.
doi:10.1109/TMTT.1980.1130158