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Abstract—In this paper, a generic planar transmission line filled,
homogeneously, with a pseudochiral omega medium is considered. It
is shown that only a uniaxial omega medium can support TE and
TM modes separately. Thus, for such a medium, the fields and modal
equations for TE, TM and TEM mode propagation are obtained. The
special case of parallel plate waveguide is solved, and the effect of
pseudochirality parameter Ω on the propagation constant and cutoff
frequency is considered. For TEM propagation, an equivalent circuit
is given which is different from the common isotropic transmission line
model. Finally, a pseudochiral stripline is analyzed, and the elements
of the equivalent circuit are calculated. The results show that the
properties of the line vary as the pseudochirality parameter changes.

1. INTRODUCTION

Pseudochiral omega medium is an interesting complex medium which
exhibits high potential for application in microwave and millimeter
wave devices. This medium was introduced in 1992 by Saadoun and
Engheta [1], for application as a reciprocal phase shifter. One year
later, Tretyakov and Sochava extended the constitutive model of Ω-
medium to the uniaxial omega media for non-reflecting shield and
antenna radomes [2]. Omega medium is reciprocal and can be easily
realized by doping a host isotropic medium with Ω-shaped conducting
microstructures. Similarity between the chiral and pseudochiral
mediums is that in both of them, the electric field induces not only
electric but also magnetic field polarizations. However, unlike chiral
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media, these polarizations are perpendicular in pseudochiral medium.
Therefore, omega media are nonchiral.

Some authors considered the analysis of wave propagation in
pseudochiral medium. Plane wave propagation in uniaxial chiro-omega
medium is considered in [3], and there are some works on the analysis of
different waveguide structures containing Ω-medium [4–7]. But there
is no general study on pseudochiral transmission lines.

In this paper, a general study of mode propagation in homogenous
pseudochiral transmission lines is carried out. First of all, it is shown
that only a uniaxial omega medium can support TE and TM modes,
separately. Thus, the fields and modal equations for such a medium
are obtained, and a special case of parallel plate waveguide is solved.
The effect of pseudochirality parameter Ω on propagation constant
and cutoff frequency is observed. For TEM propagation, an equivalent
circuit is given which is different from the common isotropic case. The
inductance and capacitance of these types of lines are complex, and the
imaginary parts are modeled by resistive elements. Finally, a stripline
filled with a uniaxial omega medium is analyzed. The elements of the
equivalent circuit versus Ω are calculated, and it is observed that the
properties of the line are different from the ordinary case.

2. DEFINITION OF THE PROBLEM

Consider a generic planar transmission line filled, homogeneously, with
a pseudochiral omega medium. As shown in Fig. 1, the line is assumed
to be uniform in the direction of propagation.

The constitutive relations for a general pseudochiral omega
medium can be written by the following [1]:

D̄ = ε0(¯̄ε · Ē + ¯̄ζ · h̄) (1a)

B̄ =
1
c0

(¯̄µ · h̄− ¯̄ζT · Ē) (1b)

where c0 = (ε0µ0)−1/2 and ε0, µ0 are the permittivity and permeability
of free space; Ē refers to the electric field; H̄ = Y0h̄ is the magnetic
field; D̄ and B̄ are the electric and magnetic flux densities respectively,
with Y0 = (ε0µ0)1/2. ¯̄ε and ¯̄µ are the permittivity and permeability
dimensionless tensors and have the following forms:

¯̄ε =

[
εx 0 0
0 εy 0
0 0 εz

]
, ¯̄µ =

[
µx 0 0
0 µy 0
0 0 µz

]
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Figure 1. A transmission
line filled homogeneously with a
pseudochiral omega medium.
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Figure 2. Uniaxial pseudochiral
omega medium. Optical axis is
along the z direction.

and

¯̄ζ =

[ 0 ζxy ζxz

ζyx 0 ζyz

ζzx ζzy 0

]
. (2)

In this notation, ¯̄ζT refers to the transpose of ¯̄ζ, and it shows that
the Ω-medium is reciprocal.

We assume the guided propagation in the z direction, and the
field components Ez and hz are the supporting vectors. Since
omega medium is a special case of a bi-anisotropic medium, TE/TM
decoupling of the fields cannot occur [8]. In other words, the supporting
field components are coupled with a 2× 2 matrix differential equation.
This means that in general, TE or TM modes do not exist separately.
But under following constraints, TE/TM decoupling will occur [8]:

εx

εy
=

µx

µy
, ζxy = −ζyx, ζxz = −ζzx, ζyz = −ζzy (3)

Considering the above constraints, it is revealed that only the
uniaxial medium, when its optical axis is along the z direction, can
satisfy these conditions. This medium is depicted in Fig. 2, and its
parameters have the following forms:

¯̄ε = εt(x̂x̂ + ŷŷ) + εnẑẑ (4a)
¯̄µ = µt(x̂x̂ + ŷŷ) + µnẑẑ (4b)
¯̄ζ = jΩ(x̂ŷ − ŷx̂). (4c)

where, Ω is the dimensionless pseudochirality parameter. We consider
a uniaxial omega medium in the rest of the analysis.
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3. TE AND TM MODES OF PROPAGATION

3.1. TE Modes

By considering Equations (1a) and (1b) and assuming time-harmonic
field variations of the form exp(jωt), we have Maxwell’s curl equations
in a source-free region of uniaxial omega medium:

∇× h̄ = jk0(¯̄ε · Ē + ¯̄ζ · h̄) (5a)

∇× Ē = jk0(¯̄ζT · Ē − ¯̄µ · h̄). (5b)

where k0 = ω/c0 and the dimension-less tensors ¯̄ε, ¯̄µ, ¯̄ζ have the form
of Equations (4a), (4b) and (4c). For guided propagation in the z
direction, the fields Ē and h̄ may be written as

Ē = Ē(x, y)e−jβk0z, h̄ = h̄(x, y)e−jβk0z (6)

where βk0 is the propagation constant in the direction z of propagation.
Assuming Ez = 0 and using (5a) and (5b), all field components can be
expressed in terms of hz:


Ex

Ey

hx

hy


 =

1
k0(εtµt − Ω2 − β2)




−jµt∂y

jµt∂x

−j∂y(β + jΩ)
−j∂x(β + jΩ)


hz (7)

where ∂x and ∂y stand for ∂/∂x and ∂/∂y respectively. We define the
TE mode impedance as the following equation:

Ē = −ZTE ẑ × H̄, ZTE = Z0µt/(β + jΩ) (8)

where Z0 =
√

µ0/ε0. Finally the wave equation for hz is:
[
∂2

x + ∂2
y + k2

0

µn

µt
(εtµt − Ω2 − β2)

]
hz = 0 (9)

3.2. TM Modes

We follow the procedure of the previous section to obtain the field
and modal equations of the TM modes. Considering Equations (5a)
and (5b), we have




Ex

Ey

hx

hy


 =

1
k0(εtµt − Ω2 − β2)



−j∂x(β − jΩ)
−j∂y(β − jΩ)

jεt∂y

−jεt∂x


Ez (10)

The TM mode impedance is

Ē = −ZTM ẑ × H̄, ZTM = Z0(β − jΩ)/εt (11)
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and the wave equation for Ez is:[
∂2

x + ∂2
y + k2

0

εn

εt
(εtµt − Ω2 − β2)

]
Ez = 0. (12)

3.3. Parallel Plate Waveguide Example

In this section, we consider a parallel plate waveguide with a as the
distance between its plates. Considering fields independent from the x
variable, Equation (9) can be easily solved for TEn modes. Therefore,
hz has the following form:

hz = cos(nπy/a)e−jβk0z (13)
and the normalized propagation constant and cut-off frequencies for
TEn modes are:

βTE =

√
− µt

µnk2
0

(nπ

a

)2
− Ω2 + εtµt (14)

fTE
c =

nc0

2a

√
µt

µn(εtµt − Ω2)
. (15)

The results for TM n modes are therefore:

βTM =

√
− εt

εnk2
0

(nπ

a

)2
− Ω2 + εtµt (16)

fTM
c =

nc0

2a

√
εt

εn(εtµt − Ω2)
. (17)

It can be seen from Equations (15) and (17) that an increase
in pseudochirality parameter Ω leads to an increase in the cut-off
frequencies of TE and TM modes. Also, it is observed that for a
guided propagation wave, there is a limiting value of εtµt for Ω.

4. TEM MODE PROPAGATION

For analysis of TEM mode, we return to Maxwell’s equations.
By splitting ∇ operator into its transverse and longitudinal parts,
Equations (5a) and (5b) can be written as:

∇t × Ē = 0 (18a)
∇t × h̄ = 0 (18b)

ẑ × ∂Ē

∂z
= jk0(¯̄ζT · Ē − ¯̄µ · h̄) (18c)

ẑ × ∂h̄

∂z
= jk0(¯̄ε · Ē + ¯̄ζ · h̄). (18d)
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Solving (18c) and (18d) results in obtaining the normalized
propagation constant and the impedance of TEM mode:

β =
√

εtµt − Ω2 (19)
Ē = −ZTEM ẑ × H̄, ZTEM = Z0(β − jΩ)/εt. (20)

Equation (18a) shows that for case of uniaxial omega medium,
there is no problem in defining a unique voltage between the two
conductors of the line. Therefore, we are able to calculate the per
unit length equivalent inductance and capacitance of the structure:

L =

√
εtµt − Ω2

∫

C1

(Exdy − Eydx)

c0I0
(21)

C =
ε0β(β + jΩ)

µtV0

∮

C2

(Exdy − Eydx) (22)

where I0 =
∮

C2

H̄ · d̄l̄ and V0 =
∫

C1

Ē · d̄l̄.

The integration paths C1 and C2 are shown in Fig. 1. Since the
impedance ZTEM has a complex value, there is a phase difference
between electric and magnetic fields. Therefore, we expect from
Equations (21) and (22) that the inductance L and capacitance C
be complex. The imaginary part of the inductance and capacitance
can be regarded as a frequency dependent resistance. For example,
the inductance can be written as L = L0 + jL1. Thus, the equivalent
circuits of this line can be modeled as Fig. 3.

It is noted that the line is assumed to be lossless. Therefore, L1

and C1 must be in opposite signs. Relations between the elements

of Fig. 3 can be easily obtained with the aid of LC =
(

β
c0

)2
or

L
0

C
0

-L
1

C
1
ω

ω

Figure 3. Equivalent circuit model for
TEM mode propagation.
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Figure 4. A symmetri-
cal stripline filled with a
uniaxial omega medium.
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equivalently:
L0C0 + L1C1 = µ0ε0(µtεt − Ω2) (23a)

and L1C0 = L0C1. (23b)
Also, the equations and models given in this section are not valid

for any direction of propagation. On the other hand, these models are
based on decomposition of the fields, and this case occurs when the
direction of propagation is along with the optical axes of the medium.
Other methods such as immitance approach proposed by Itoh [10],
which consider an arbitrary direction of propagation, cannot be used
for the case of omega medium.

5. PSEUDOCHIRAL STRIPLINE

As shown in Fig. 4, we consider a symmetrical stripline which is filled
with a uniaxial omega medium.

The structure of Fig. 4 is assumed to be infinite in x direction.
Thus, we define Fourier transform for all the field components and
replace ∂x by−jkx. The purpose is to find the element of the equivalent
circuit of the line. Therefore, we apply variational technique described
in [9]. With the aid of Equations (18a) and (18b) and ∇ ·D = ρe and
defining the Green’s function G(x, x′, y) for electric potential, one has:

∂2
xG(x, x′, y) + ∂2

yG(x, x′, y) = −δ(x− x′)δ(y − h/2)
ε0εt

(24)

Applying the Fourier transform to Equation (24), yields:

∂2
yG̃(kx, x′, y)− k2

xG̃(kx, x′, y) = −e−jkxx′δ(y − h/2)
ε0εt

(25)

where G̃ refers to the Fourier transform of G. Applying the boundary
conditions at y = 0, h/2, h yields the following form for G̃(kx, x′, y):

G̃(kx, x′, y) = exp(−jkxx′)
ε0εtkx cosh(kxh/2)

...

{
sinh(kxy), y ≤ h
sinh(kx(h− y)), y > h

(26)

The value of capacitance is then:
1
C

=
∫∫

ρ(x)ρ(x′)G(x, x′, h/2)dxdx′[
w/2∫
−w/2

ρ(x′)dx′
]2 . (27)

We tested several appropriate trail functions for a good
approximation for the capacitance [9]. For numerical results, we
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consider the stripline of Fig. 4 with w = 2 mm and h = 4 mm. In this
example, a uniaxial omega medium with εt = 3, εn = 2, µt = 2, µn = 1
and with an arbitrary pseudochiral parameter Ω is considered. The
variations of the elements of the equivalent circuit versus Ω are
illustrated in Fig. 5.
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Figure 5. Elements of the equivalent circuit for pseudochiral stripline
of Fig. 4 versus Ω. Dimensions are: w = 2 mm and h = 4 mm and the
parameters of the medium are: εt = 3, εn = 2, µt = 2, and µn = 1.

As can be observed in Fig. 5, the parameters of the equivalent
circuit of Fig. 3 change when the pseudochirality parameter Ω varies.
For Ω = 0, the imaginary parts of inductance and capacitance are zero
and agree with the ordinary case.

6. CONCLUSION

A general study on TE, TM and TEM mode propagation in
pseudochiral transmission line is carried out. It was shown that
only uniaxial omega medium can support TE and TM modes
separately. The elements of the equivalent circuit for TEM mode are
complex, and the imaginary parts can be modeled by a resistance.
The results for a stripline show that the real parts of inductance
and capacitance decrease, and imaginary parts increase as the
pseudochirality parameter Ω increases.
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