Vol. 99
Latest Volume
All Volumes
PIER 180 [2024] PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2009-12-01
Analytical and Numerical Analyses of a Current Sensor Using Non Linear Effects in a Flexible Magnetic Transducer
By
Progress In Electromagnetics Research, Vol. 99, 323-338, 2009
Abstract
A theoretical study and a simulation method are proposed for superparamagnetic current sensors implementing a uniformly wound toroidal core topology. So as to be easy to implement, this sensor topology can be made flexible thanks to the use of a core made up of a superparamagnetic powder embedded in a flexible plastic matrix. The measurement of DC and AC currents is possible provided that a sinusoidal magnetic field excitation is applied to the superparamagnetic transducer. An analytical model is proposed for computing the sensor output signal and we demonstrate that when the detection of the component at the second order harmonic of the excitation frequency is used, the measurement is independent of the conductor position in a given current range. For simulating the dynamic response of the sensor, we propose to combine the analytical model, or a finite elements model, with a time-discretization method. Furthermore, simulations are carried out considering a ring shaped sensor and the real magnetization characteristics of a superparamagnetic material. Simulations are provided over the [-10 kA 10 kA] range and for various amplitudes of the excitation signal. The results obtained with the analytical model, which is computationally efficient, are within 4% to 12.7% from the numerical results.
Citation
Eric Vourc'h, Pierre-Yves Joubert, and Lionel Cima, "Analytical and Numerical Analyses of a Current Sensor Using Non Linear Effects in a Flexible Magnetic Transducer," Progress In Electromagnetics Research, Vol. 99, 323-338, 2009.
doi:10.2528/PIER09102006
References

1. Costa, F., P. Poulichet, F. Mazaleyrat, and E. Laboure, "The current sensors in power electronics, a review," EPE Journal, Vol. 11, No. 1, 7-18, 2001.

2. Ripka, P., "Sensors based on bulk soft magnetic materials: Advances and challenges," J. Magn. Magn. Mater., Vol. 320, 2466-2473, 2008.
doi:10.1016/j.jmmm.2008.04.079

3. Ripka, P., "Advances in fluxgate sensors," Sens. Actuators A, Vol. 106, 8-14, 2003.
doi:10.1016/S0924-4247(03)00094-3

4. Ray, W., "Wide bandwidth Rogowski current transducers, Part 1: The Rogowski coil," EPE Journal, Vol. 3, No. 1, 51-59, 1993.

5. Lenglet, L., "Current & magnetic field sensors, control method & magnetic core for said sensors," Billanco Patent WO2007042646 (A1), 2007.

6. Vourc'h, E., P. Y. Joubert, G. Cinquin, Y. Maniouloux, L. Cima, "Novel magnetic field and current sensors based on superparamagnetic transducers," Sensor Letters, Vol. 7, No. 3, 1-6, 2009.

7. Prokopovich, D. V., A. V. Popov, and A. V. Vinogradov, "Analytical and numerical aspects of bragg fiber design," Progress In Electromagnetics Research B, Vol. 6, 361-379, 2008.
doi:10.2528/PIERB08031221

8. Steinbauer, M., R. Kubasek, and K. Bartusek, "Numerical method of simulation of material influences in MR tomography," Progress In Electromagnetics Research Letters, Vol. 1, 205-210, 2008.
doi:10.2528/PIERL07120605

9. Ozgun, O. and M. Kuzuoglu, "Finite element analysis of electromagnetic scattering problems via iterative leap-field domain decomposition method," Journal of Electromagnetic Waves and Applications, Vol. 22, No. 2--3, 251-266, 2008.
doi:10.1163/156939308784160668

10. Urbani, F., "Numerical analysis of periodic planar structures on uniaxial substrates for miniaturization purposes," Progress In Electromagnetics Research Letters, Vol. 5, 131-136, 2008.
doi:10.2528/PIERL08111303

11. Neel, L., "Influence des fluctuations thermiques sur l'aimantation de grains ferromagnetiques trµes fins," Compte Rendu Hebdo-madaire de Seance de l'Academie des Sciences, Vol. 228, 664-666, 1949.

12. Neel, L., "Theorie du trainage magnetique des ferromagnetiques en grains fins avec application aux terres cuites," Annales de Geophysique, Vol. 5, 99-136, 1949.

13. Bean, C. P., "Hysteresis loops of mixtures of ferromagnetic micropowders," J. Appl. Phys., Vol. 26, No. 11, 1381-1383, 1955.
doi:10.1063/1.1721912

14. Bean, C. P. and J. D. Livingston, "Superparamagnetism," J. Appl. Phys., Vol. 30, 120S-129S, 1955.

15. Gleich, B. and J. Weizenecker, "Tomographic imaging using the nonlinear response of magnetic particles," Nature, Vol. 435, No. 7046, 1173-4, 2005.
doi:10.1038/nature03808

16. Pankhurst, Q. A., J. Connolly, S. K. Jones, and J. Dobson, "Applications of magnetic nanoparticles in biomedicine," J. Phys. D: Appl. Phys., Vol. 36, R167-R181, 2003.
doi:10.1088/0022-3727/36/13/201

17. Arruebo, M., R. Fernandez-Pachero, M. R. Ibarra, and J. Santamaria, "Magnetic nanoparticles for drug delivery," Nanotoday, Vol. 2, No. 3, 22-32, 2007.

18. Raj, K., R. Moskowitz, and R. Casciari, "Advances in ferrofluid in ferrofluid technology," J. Magn. Magn. Mater., Vol. 149, 174-180, 1995.
doi:10.1016/0304-8853(95)00365-7

19. Ravaud, R. and G. Lemarquand, "Design of ironless loudspeakers with ferrofluid seals: Analytical study based on the coulombian model," Progress In Electromagnetics Research B, Vol. 14, 285-309, 2009.
doi:10.2528/PIERB09031904

20. Kneller, E. and F. E. Fand Luborsky, "Particle size dependence of coercivity and remanence of single domain particles," J. Appl. Phys., Vol. 34, 656-658, 1963.
doi:10.1063/1.1729324

21. Cullity, B. D. and C. D. Graham, Introduction to Magnetic Materials, 2nd Ed., Wiley-IEEE Press, 2008.