Vol. 9
Latest Volume
All Volumes
PIERM 130 [2024] PIERM 129 [2024] PIERM 128 [2024] PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2009-11-09
Introducing Fictitious Currents for Calculating Analytically the Electric Field in Cylindrical Capacitors
By
Progress In Electromagnetics Research M, Vol. 9, 139-150, 2009
Abstract
The aim of this paper is to show the interest of using equivalence models for calculating the electric field produced by cylindrical capacitors with dielectrics. To do so, we use an equivalent model, based on the dual Maxwell's Equations for calculating the two electric field components created inside the capacitor and outside it. This equivalent model uses fictitious currents generating a electric vector potential that allows us to determine the electric field components in all points in space. The electric field produced by charge distributions as capacitor with dielectrics is generally determined by using the coulombian model. Indeed, it is well known that the electric field derives from a scalar potential. By using the Maxwell's equations, this scalar potential is in fact linked to the existence of charge distributions that are generally located on the faces of the capacitors. However, this last model does not allow us to obtain reduced analytical expressions since it involves the calculation of charge volume density appearing in the dielectric material for arcshaped cylindrical topologies. Consequently, it is interesting to look for another approach that gives analytical expressions with a lower computational cost. In this paper, we show that the use of fictitious currents instead of charges allow us to obtain 3D analytical reduced expressions with a lower computational cost. This analytical approach is compared to the coulombian model for showing the equivalence between the two approaches.
Citation
Romain Ravaud, Guy Lemarquand, and Slobodan Babic, "Introducing Fictitious Currents for Calculating Analytically the Electric Field in Cylindrical Capacitors," Progress In Electromagnetics Research M, Vol. 9, 139-150, 2009.
doi:10.2528/PIERM09101509
References

1. Durand, E., Magnetostatique, Masson Editeur, 1968.

2. Akyel, C., S. I. Babic, and M. M. Mahmoudi, "Mutual inductance calculation for non-coaxial circular air coils with parallel axes," Progress In Electromagnetics Research, Vol. 91, 287-301, 2009.
doi:10.2528/PIER09021907

3. Babic, S. I., F. Sirois, and C. Akyel, "Validity check of mutual inductance formulas for circular filaments with lateral and angular misalignments," Progress In Electromagnetics Research M, Vol. 8, 15-26, 2009.
doi:10.2528/PIERM09060105

4. Furlani, E. P., S. Reznik, and A. Kroll, "A three-dimensonal field solution for radially polarized cylinders," IEEE Trans. Magn., Vol. 31, No. 1, 844-851, 1995.
doi:10.1109/20.364587

5. Furlani, E. P. and M. Knewston, "A three-dimensional field solution for permanent-magnet axial-field motors," IEEE Trans. Magn., Vol. 33, No. 3, 2322-2325, 1997.
doi:10.1109/20.573849

6. Ravaud, R., G. Lemarquand, and V. Lemarquand, "Magnetic field created by tile permanent magnets," IEEE Trans. Magn., Vol. 45, No. 7, 2920-2926, 2009.
doi:10.1109/TMAG.2009.2014752

7. Furlani, E. P., Permanent Magnet and Electromechanical Devices: Materials, Analysis and Applications, Academic Press, 2001.

8. Ravaud, R. and G. Lemarquand, "Comparison of the coulombian and amperian current models for calculating the magnetic field produced by radially magnetized arc-shaped permanent magnets," Progress In Electromagnetics Research, Vol. 95, 309-327, 2009.
doi:10.2528/PIER09042105

9. Emets, Y. P., N. V. Barabanova, Y. P. Onofrichuk, and L. Suboch, "Force on insulated wire at the interface of 2 dielectric media," IEEE Trans. Dielectrics and Electrical Insulation, Vol. 1, No. 6, 1201-1204, 1994.
doi:10.1109/94.368642

10. Emets, Y. P., "Electric field of insulated wire at the interface of two dielectric media ," IEEE Trans. Dielectrics and Electrical Insulation, Vol. 4, No. 4, 439-449, 1997.
doi:10.1109/94.625361

11. Emets, J. Y. and Y. P. Onofrichuk, "Interaction forces of dielectric cylinders in electric fields," IEEE Trans. Dielectrics and Electrical Insulation, Vol. 3, No. 1, 87-98, 1996.
doi:10.1109/94.485519

12. Emets, Y. P., "System of two dielectric cylinders involving charge sources: I. Calculation of the electric field," Technical Physics, Vol. 50, No. 11, 1391-1401, 2005.
doi:10.1134/1.2131944

13. Wu, C.-Y., Y. Wang, and C.-C. Zhu, "Effect of equivalent surface charge density on electrical field of positively beveled p-n junction," Journal of Shangai University, Vol. 12, No. 1, 43-46, 2008.
doi:10.1007/s11741-008-0109-2

14. Ye, Q. Z., J. Li, and J. C. Zhang, "A displaced dipole model for a two-cylinder system," IEEE Trans. Dielectrics and Electrical Insulation, Vol. 11, No. 3, 542-550, 2004.

15. Babic, S. I. and C. Akyel, "Improvement in the analytical calculation of the magnetic field produced by permanent magnet rings," Progress In Electromagnetics Research C, Vol. 5, 71-82, 2008.

16. Babic, S. I., C. Akyel, and M. M. Gavrilovic, "Calculation improvement of 3D linear magnetostatic field based on fictitious magnetic surface charge," IEEE Trans. Magn., Vol. 36, No. 5, 3125-3127, 2000.
doi:10.1109/20.908707

17. Lang, M., "Fast calculation method for the forces and stiffnesses of permanent-magnet bearings," 8th International Symposium on Magnetic Bearing, 533-537, 2002.

18. Ravaud, R., G. Lemarquand, V. Lemarquand, and C. Depollier, "Discussion about the analytical calculation of the magnetic field created by permanent magnets," Progress In Electromagnetics Research B, Vol. 11, 281-297, 2009.
doi:10.2528/PIERB08112102

19. Ravaud, R., G. Lemarquand, V. Lemarquand, and C. Depollier, "Analytical calculation of the magnetic field created by permanent-magnet rings," IEEE Trans. Magn., Vol. 44, No. 8, 1982-1989, 2008.
doi:10.1109/TMAG.2008.923096

20. Ravaud, R., G. Lemarquand, V. Lemarquand, and C. Depollier, "The three exact components of the magnetic field created by a radially magnetized tile permanent magnet," Progress In Electromagnetics Research, Vol. 88, 307-319, 2008.
doi:10.2528/PIER08112708

21. Babic, S. I., C. Akyel, S. Salon, and S. Kincic, "New expressions for calculating the magnetic field created by radial current in massive disks," IEEE Trans. Magn., Vol. 38, No. 2, 497-500, 2002.
doi:10.1109/20.996131

22. Ravaud, R., G. Lemarquand, V. Lemarquand, and C. Depollier, "Permanent magnet couplings: Field and torque three-dimensional expressions based on the coulombian model," IEEE Trans. Magn., Vol. 45, No. 4, 1950-1958, 2009.
doi:10.1109/TMAG.2008.2010623

23. Azzerboni, B., E. Cardelli, and A. Tellini, "Computation of the magnetic field in massive conductor systems," IEEE Trans. Magn., Vol. 25, No. 6, 4462-4473, 1989.
doi:10.1109/20.45327

24. Azzerboni, B., E. Cardelli, M. Raugi, A. Tellini, and G. Tina, "Analytic expressions for magnetic field from finite curved conductors," IEEE Trans. Magn., Vol. 27, No. 2, 750-757, 1991.
doi:10.1109/20.133288

25. Azzerboni, B., G. A. Saraceno, and E. Cardelli, "Three-dimensional calculation of the magnetic field created by current-carrying massive disks," IEEE Trans. Magn., Vol. 34, No. 5, 2601-2604, 1998.
doi:10.1109/20.717601

26. Brissonneau, P., Magnetisme et Materiaux Magnetiques pour l'Electrotechnique, Hermes Ed., 1997.