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Abstract—The aim of this paper is to show the interest of using
equivalence models for calculating the electric field produced by
cylindrical capacitors with dielectrics. To do so, we use an equivalent
model, based on the dual Maxwell’s Equations for calculating the
two electric field components created inside the capacitor and outside
it. This equivalent model uses fictitious currents generating a
electric vector potential that allows us to determine the electric field
components in all points in space. The electric field produced by charge
distributions as capacitor with dielectrics is generally determined by
using the coulombian model. Indeed, it is well known that the
electric field derives from a scalar potential. By using the Maxwell’s
equations, this scalar potential is in fact linked to the existence of
charge distributions that are generally located on the faces of the
capacitors. However, this last model does not allow us to obtain
reduced analytical expressions since it involves the calculation of
charge volume density appearing in the dielectric material for arc-
shaped cylindrical topologies. Consequently, it is interesting to look
for another approach that gives analytical expressions with a lower
computational cost. In this paper, we show that the use of fictitious
currents instead of charges allow us to obtain 3D analytical reduced
expressions with a lower computational cost. This analytical approach
is compared to the coulombian model for showing the equivalence
between the two approaches.
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1. INTRODUCTION

The Maxwell’s Equations are widely used for solving magnetostatics
or electrostatics problems. These local equations characterize the
magnetic or electric fields produced by charge or current distributions.
In magnetostatics or electrostatics problems, the Maxwell’s equations
can be divided in two equation groups (Eqs. (1) and (2)). This
separation is interesting for calculations involving dielectrics or
magnetized materials.

∇ ~D = ρf ∇× ~E = ~0 (1)

∇ ~B = 0 ∇× ~H = ~j (2)

where ~D is the electric displacement vector, ρf is the free electric
charge volume density, ~E is the electric field vector, ~B is the magnetic
induction field vector, ~H is the magnetic field vector and~j is the current
density.

The previous equations involve that the magnetic field derives
from a vector potential though the electric field derives from a scalar
potential [1]. Consequently, the magnetic field created by currents are
often modelled by using the Biot-Savart Law [2, 3] or by using the
amperian current model [4–8]. In the other hand, the electric field
is often determined by using the coulombian model, the equivalent
surface charges and dipoles [9–14]. However, in some cases, it is more
interesting to use equivalent charge distributions yielding the same field
as the one produced by source distributions. For example, the magnetic
field created by permanent magnets has been largely studied by using
the coulombian model [15–18]. For arc-shaped permanent magnets,
the coulombian model is suitable for obtaining analytical expressions
based on special functions [19–25]. Consequently, it seems to be more
judicious to introduce in some cases equivalent models for calculating
the magnetic field created by arc-shaped permanent magnets. In short,
the dual Maxwell’s Equations involving the coulombian model of a
magnet are the following:

∇ ~B = ρ∗ ∇× ~H = ~0

∇ ~D = 0 ∇× ~E = ~j∗
(3)

where ρ∗ is a magnetic charge volume density and ~j∗ is a fictitious
current density. The coulombian model of a magnet corresponds to the
case when ∇ ~B = ρ∗. Furthermore, for linear media, the two following
equations are useful to define the main parameters.

~B = µ0
~H + ~J ~D = ε0 ~E + ~P (4)
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By using the analogy between the classical Maxwell’s equations and
the dual Maxwell’s equations, we can introduce equivalent currents for
calculating the electric field in all points in space. These equivalent
currents are linked to the existence of a vector potential.

1.1. Introducing the Vector Potential from the Fictitious
Currents

The previous section introduces fictitious currents for calculating
the electric field created by capacitors with dielectrics by using
the analogy between the classical Maxwell’s equations and the dual
Maxwell’s equations. The use of fictitious currents can be implemented
to all kinds of geometries (parallelepipedic geometries, cylindrical
geometries, spherical geometries). However, the way of treating each
configuration is directly linked to its topology. For example, if we take
a parallelepipedic capacitor, the coulombian model or the fictitious
currents lead to fully analytical expressions of the electric field.
Consequently, the choice of the approach is not of great importance
for parallelepipedic topologies. For cylindrical topologies, the problem
is different.

As we have introduced equivalent fictitious currents, we can define
a vector potential ~A that verifies:

~E = ∇× ~A ∇ ~E = 0 (5)

In magnetostatics, the vector potential ~Am is defined by the
following relation [26].

~Am =
1
4π

∫

V

~J ×∇

 1∣∣∣~r − ~r′

∣∣∣


 dṼ (6)

It is noted that this vector potential verifies ~H = ∇× ~Am. Moreover,
is is emphasized that the Hamiltonian operator is with respect to the
source coordinates in this paper, as in [26].

By using the analogy between the vector potential in magnetostat-
ics and electrostatics, we can define a vector potential in electrostatics
as follows:

~A =
1
4π

∫

V

~P ×∇

 1∣∣∣~r − ~r′

∣∣∣


 dṼ (7)

As stated in [26], we can use the following identity:

∇×

 ~J∣∣∣~r − ~r′

∣∣∣


 =

1∣∣∣~r − ~r′
∣∣∣

(
∇× ~J

)
− ~J ×∇


 1∣∣∣~r − ~r′

∣∣∣


 (8)
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Therefore, the vector potential in magnetostatics can be written as
follows:

~Am =
1
4π




∫

V
−∇×


 ~J∣∣∣~r − ~r′

∣∣∣
dṼ


 +

∫

V

∇× ~J∣∣∣~r − ~r′
∣∣∣
dṼ


 (9)

By applying the previous relation to the case of the vector potential in
electrostatics, we obtain:

~A =
1
4π




∫

V
−∇×


 ~P∣∣∣~r − ~r′

∣∣∣
dṼ


 +

∫

V

∇× ~P∣∣∣~r − ~r′
∣∣∣
dṼ


 (10)

By using the Stokes theorem, we obtain the two final expressions:

~Am =
ε0
4π




∫

S

~J
ε0
× ~n∣∣∣~r − ~r′

∣∣∣
dS̃ +

∫

V

∇×
(

~J
ε0

)
∣∣∣~r − ~r′

∣∣∣
dṼ


 (11)

~A =
ε0
4π




∫

S

~P
ε0
× ~n∣∣∣~r − ~r′

∣∣∣
dS̃ +

∫

V

∇×
(

~P
ε0

)
∣∣∣~r − ~r′

∣∣∣
dṼ


 (12)

Basically, we find the two equivalent surface and volume currents
distributions giving the same electric field as the one obtained in the
coulombian approach.

For the rest of this paper, we use the notation Xmagn when we
consider a charged distribution related to magnetostatics and Xelec

for electrostatics. According to the coulombian model, a permanent
magnet can be represented by fictitious magnetic pole surface and
volume densities that are expressed as follows:

σ∗magn = ~J · ~n ρ∗magn = −∇ · ~J (13)

Applying the coulombian model in the case of dielectric capacitors, we
obtain:

σ∗elec = ~P · ~n ρ∗elec = −∇ · ~P (14)

The amperian current model used for calculating the magnetic field
created by permanent magnets implies the determination of fictitious
currents of surface and volume densities:

~K∗
magn =

~J × ~n

µ0

~j∗magn =
∇× ~J

µ0
(15)

It is emphasized here that the previous relations are commonly used in
the literature. In this paper, we choose to introduce fictitious currents
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in electrostatics for calculating the electric field produced in cylindrical
capacitors with dielectrics.

~K∗
elec =

~P × ~n

ε0
~j∗elec =

∇× ~P

ε0
(16)

The previous relations must verify the following equations:∫

S1

σ∗elecdS̃ +
∫

S2

σ∗elecdS̃ +
∫

V
ρ∗elecdṼ = 0

∫

S1

σ∗magndS̃ +
∫

S2

σ∗magndS̃ +
∫

V
ρ∗magndṼ = 0

∫

S1

~K∗
elecdS̃ +

∫

S2

~K∗
elecdS̃ +

∫

V

~j∗elecdṼ = 0
∫

S1

~K∗
magndS̃ +

∫

S2

~K∗
magndS̃ +

∫

V

~j∗magndṼ = 0

(17)

2. APPLICATION OF THE CASE OF A CYLINDRICAL
CAPACITOR WITH DIELECTRIC MATERIAL

2.1. Notation and Geometry

We present in this section the 3D analytical expression of the electric
field created by a cylindrical capacitor with dielectric material. This
is typically an academic example for showing the properties of the
Maxwell’s equations and the interest of using equivalent models. To
do so, let us first consider the representation shown in Figure 1. The
outer face is charged with the surface density +σ = q

S2
and the inner

face is charged with the surface density σ = −q
S1

. The dielectric has
also a charge volume density σv that is given by

σv = −∇~P (18)

By using the vector potential, the calculation of σv is not required
because it does not appear in the basic equations describing fictitious
currents generating the same electric field.

2.2. Radial Component Determined with the Amperian
Current Model

The radial component Er(r, z) can be determined by calculating the
projection of ~H(~r) along ~ur:

Er(r, z) = ~E(~r) • ~ur =
(

1
ε0
∇× ~A(~r)

)
• ~ur (19)
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Figure 1. Representation of a
cylindrical capacitor charged with
two arc-shaped planes.
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Figure 2. Representation of a
cylindrical capacitor modelled by
fictitious currents flowing on the
upper and lower faces.

By using the notations in Figures 1 and 2, and by using (16) we have:

Er(r, z) =
P

4πε0

∫ r2

r1

∫ 2π

0

(z − z2) cos(θ̃)∣∣∣~r − ~r′
∣∣∣
3 r̃dr̃dθ̃

− P

4πε0

∫ r2

r1

∫ 2π

0

(z − z1) cos(θ̃)∣∣∣~r − ~r′
∣∣∣
3 r̃dr̃dθ̃ (20)

We also use the following relation:
1∣∣∣~r − ~r′

∣∣∣
3 =

1
(
r2 + r̃2 − 2rr̃ cos(θ̃) + (z − z̃)2

) 3
2

(21)

It is emphasized here that the interest of using the amperian
current model for this configuration lies in the fact that only two
integrals must be calculated. Consequently, we obtain an analytical
expression of the radial field component based on elliptic integrals.
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After mathematical manipulations and by using Mathematica, the
arguments of the elliptic integrals used are defined as follows:

φ+,−
1 =

(b + 2e)x
bx±√2

√
xe2(x− c)

φ2 = i sinh−1

(√
−1

b + 2e

√
b− 2e cos(θ̃)

)

φ3 =
b + 2e

b− 2e

(22)

It is noted that we mainly use the elliptic integrals of the second and
third kind for the calculation of the radial component. These special
functions have also been used in [19, 20]. However, no further numerical
integrations are required here. In short, the radial component Er(r, z)
can be expressed as follows:

Er(r, z) =
P

4πε0

2∑

i=1

2∑

k=1

(−1)i+k (g(i, k, 2π)− g(i, k, 0)) (23)

with
g(i, k, θ̃)=2(z−zk)f(r2+(z−zk)2, r2+r2

i +(z−zk)2, rri,−r2−2(z−zk)2, θ̃)
(24)

where
f(a, b, e, c, x, θ̃) = η

(
2ξ1(2ce2 + ξ2)

)
F∗ [φ2, φ3]

+η
(
−e2(c− x)(bx

√
2 + 2ξ1)

)
Π∗ [

φ+
1 , φ2, φ3

]

+η
(
e2(c− x)(bx

√
2− 2ξ1)

)
Π∗ [

φ−1 , φ2, φ3

]

−2ηax
(
xe2 − ce2

√
2 + bξ1

)
Π∗ [

φ+
1 , φ2, φ3

]

−2ηax
(
−xe2+ce2

√
2+bξ1

)
Π∗ [

φ−1 , φ2, φ3

]
(25)

where F∗ [x, y] and Π∗ [x, y, z] are the incomplete elliptic integrals
of the second and third kind that have been used in previous
papers [19, 20]. In addition, the parameters ξ1, ξ2, η are defined as
follows:

ξ1 =
√

e2x(x− c)

ξ2 = x(b2 − 2e2)

η =
i

√
−e2 sin(θ̃)2

(b−2e)2
csc(θ̃)

2
√

−1
b+2exξ1(2ce2 + ξ2)

(26)
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2.3. Axial Component Ez(r, z)

The axial component Ez(r, z) can be determined by calculating the
projection of ~E(~r) along ~uz:

Ez(r, z) = ~E(~r) • ~uz =
(

1
ε0
∇× ~A(~r)

)
• ~uz (27)

By using the notations in Figures 1 and 2, and by using (16) we
have:

Ez(r, z) =
P

4πε0

∫ r2

r1

∫ 2π

0

r cos(θ̃)∣∣∣~r − ~̃r(z2)
∣∣∣
3 r̃dr̃dθ̃

− P

4πε0

∫ r2

r1

∫ 2π

0

r cos(θ̃)∣∣∣~r − ~̃r(z1)
∣∣∣
3 r̃dr̃dθ̃ (28)

where
1∣∣∣~r − ~̃r(zj)

∣∣∣
3 =

1
(
r2 + r̃2 − 2rr̃ cos(θ̃) + (z − zj)2

) 3
2

(29)

After mathematical manipulations, we find the following reduced semi-
analytical expression of the axial component Ez(r, z):

By using the relation aik = (r − ri)2 + (z − zk)2, this axial
component Hz(r, z) is thus given by:

Ez(r, z) =
P

4πε0

2∑

i=1

2∑

k=1

(−1)i+k (I1(r, z) + I2(r, z)) (30)

with

I1(r, z) =
−4ri√

aik
K∗

[−4rri

aik

]
(31)

where K∗ [x] is the complete elliptic integral of the first kind [19].

I2(r, z)=
∫ 2π

0
ln

[
ri−r cos(θ̃)+

√
r2+r2

i +(z−zk)2−2rri cos(θ̃)
]
dθ̃ (32)

2.4. Comparison between the Classical Coulombian Model
and the Fictitious Current Model

We illustrate in Figures 3 and 4 the equivalence between the two
approaches (Amperian current model and coulombian model) in the
case of the electric field created by the capacitor with dielectric



Progress In Electromagnetics Research M, Vol. 9, 2009 147

material. For this purpose, we use the following parameters in Figure 3:
rin = 0.025m, rout = 0.026m, z = 0.003 m, P = 1.1 10−4 C/m2,
z = 0.02m.

We use the following parameters in Figure 4: rin = 0.025m,
rout = 0.026m, z = 0.003 m, P = 1.1 10−4 C/m2, z = 0.02m.

2.5. Comparison of the Computational Cost between the
Classical Coulombian Model and the Fictitious Current
Model

Another important comparison between the amperian current model
and the coulombian model is the computational cost for calculating the
electric field. We have compared the two models for the two electric
field components by using the coulombian model and the amperian
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Figure 3. Representation of the
radial electric field versus the ra-
dial observation point for the fol-
lowing dimensions: rin = 0.025 m,
rout = 0.026m, z = 0.003m, P =
1.1 10−4 C/m2, z = 0.02m. (Line
= amperian current model, Points
= coulombian model).
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Figure 4. Representation of the
axial electric field versus the ra-
dial observation point for the fol-
lowing dimensions: rin = 0.025m,
rout = 0.028m, z = 0.003m,
P = 1.1 10−4 C/m2, z = 0.001m.
(Line = amperian current model,
Points = coulombian model).

Table 1. Comparison of the computational cost for calculating the
two electric field components with the coulombian approach and the
amperian current approach; the two components are determined in
the following observation points: Ez(r = 0.015m, z = 0.001 m) and
Er(r = 0.002m, z = 0.0035m).

Component Coulombian model Amperian model
Ez 0.015 s 0.0001 s
Er 0.016 s 0.0002 s
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current model. The Table 1 clearly shows that the amperian current
approach is more appropriate than the colombian model for calculating
the electric field produced by dielectrics.

3. CONCLUSION

This paper presents an analytical method, based on the dual
Maxwell’s equations for calculating the electric field in capacitors using
dielectrics. The interest of such an approach lies in the fact that
no volume integrals are required for the determination of the two
electric field components though such a volume integral is required
with the classical coulombian model. The comparison between two
approaches shows the accuracy of the amperian current model used
in electrostatics. Furthermore, the comparison of the computational
cost for calculating the two electric field components clearly shows that
the amperian current model is more appropriate than the coulombian
model. More generally, we can say that the proposed technique can be
implement to realistic 1D, 2D, 3D structures with dielectrics of low or
high permittivity.

REFERENCES

1. Durand, E., Magnetostatique, Masson Editeur, Paris, France,
1968.

2. Akyel, C., S. I. Babic, and M. M. Mahmoudi, “Mutual inductance
calculation for non-coaxial circular air coils with parallel axes,”
Progress In Electromagnetics Research, PIER 91, 287–301, 2009.

3. Babic, S. I., F. Sirois, and C. Akyel, “Validity check of mutual
inductance formulas for circular filaments with lateral and angular
misalignments,” Progress In Electromagnetics Research M, Vol. 8,
15–26, 2009.

4. Furlani, E. P., S. Reznik, and A. Kroll, “A three-dimensonal field
solution for radially polarized cylinders,” IEEE Trans. Magn.,
Vol. 31, No. 1, 844–851, 1995.

5. Furlani, E. P. and M. Knewston, “A three-dimensional field
solution for permanent-magnet axial-field motors,” IEEE Trans.
Magn., Vol. 33, No. 3, 2322–2325, 1997.

6. Ravaud, R., G. Lemarquand, and V. Lemarquand, “Magnetic field
created by tile permanent magnets,” IEEE Trans. Magn., Vol. 45,
No. 7, 2920–2926, 2009.

7. Furlani, E. P., Permanent Magnet and Electromechanical Devices:
Materials, Analysis and Applications, Academic Press, 2001.



Progress In Electromagnetics Research M, Vol. 9, 2009 149

8. Ravaud, R. and G. Lemarquand, “Comparison of the coulombian
and amperian current models for calculating the magnetic field
produced by radially magnetized arc-shaped permanent magnets,”
Progress In Electromagnetics Research, PIER 95, 309–327, 2009.

9. Emets, Y. P., N. V. Barabanova, Y. P. Onofrichuk, and L. Suboch,
“Force on insulated wire at the interface of 2 dielectric media,”
IEEE Trans. Dielectrics and Electrical Insulation, Vol. 1, No. 6,
1201–1204, 1994.

10. Emets, Y. P., “Electric field of insulated wire at the interface
of two dielectric media,” IEEE Trans. Dielectrics and Electrical
Insulation, Vol. 4, No. 4, 439–449, 1997.

11. Emets, J. Y. and Y. P. Onofrichuk, “Interaction forces of dielectric
cylinders in electric fields,” IEEE Trans. Dielectrics and Electrical
Insulation, Vol. 3, No. 1, 87–98, 1996.

12. Emets, Y. P., “System of two dielectric cylinders involving charge
sources: I. Calculation of the electric field,” Technical Physics,
Vol. 50, No. 11, 1391–1401, 2005.

13. Wu, C.-Y., Y. Wang, and C.-C. Zhu, “Effect of equivalent
surface charge density on electrical field of positively beveled p-n
junction,” Journal of Shangai University, Vol. 12, No. 1, 43–46,
2008.

14. Ye, Q. Z., J. Li, and J. C. Zhang, “A displaced dipole model for
a two-cylinder system,” IEEE Trans. Dielectrics and Electrical
Insulation, Vol. 11, No. 3, 542–550, 2004.

15. Babic, S. I. and C. Akyel, “Improvement in the analytical
calculation of the magnetic field produced by permanent magnet
rings,” Progress In Electromagnetics Research C, Vol. 5, 71–82,
2008.

16. Babic, S. I., C. Akyel, and M. M. Gavrilovic, “Calculation
improvement of 3D linear magnetostatic field based on fictitious
magnetic surface charge,” IEEE Trans. Magn., Vol. 36, No. 5,
3125–3127, 2000.

17. Lang, M., “Fast calculation method for the forces and stiffnesses
of permanent-magnet bearings,” 8th International Symposium on
Magnetic Bearing, 533–537, 2002.

18. Ravaud, R., G. Lemarquand, V. Lemarquand, and C. Depollier,
“Discussion about the analytical calculation of the magnetic field
created by permanent magnets,” Progress In Electromagnetics
Research B, Vol. 11, 281–297, 2009.

19. Ravaud, R., G. Lemarquand, V. Lemarquand, and C. Depollier,
“Analytical calculation of the magnetic field created by



150 Ravaud, Lemarquand, and Babic

permanent-magnet rings,” IEEE Trans. Magn., Vol. 44, No. 8,
1982–1989, 2008.

20. Ravaud, R., G. Lemarquand, V. Lemarquand, and C. Depollier,
“The three exact components of the magnetic field created
by a radially magnetized tile permanent magnet,” Progress In
Electromagnetics Research, PIER 88, 307–319, 2008.

21. Babic, S. I., C. Akyel, S. Salon, and S. Kincic, “New expressions
for calculating the magnetic field created by radial current in
massive disks,” IEEE Trans. Magn., Vol. 38, No. 2, 497–500, 2002.

22. Ravaud, R., G. Lemarquand, V. Lemarquand, and C. Depol-
lier, “Permanent magnet couplings: Field and torque three-
dimensional expressions based on the coulombian model,” IEEE
Trans. Magn., Vol. 45, No. 4, 1950–1958, 2009.

23. Azzerboni, B., E. Cardelli, and A. Tellini, “Computation of
the magnetic field in massive conductor systems,” IEEE Trans.
Magn., Vol. 25, No. 6, 4462–4473, 1989.

24. Azzerboni, B., E. Cardelli, M. Raugi, A. Tellini, and G. Tina,
“Analytic expressions for magnetic field from finite curved
conductors,” IEEE Trans. Magn., Vol. 27, No. 2, 750–757, 1991.

25. Azzerboni, B., G. A. Saraceno, and E. Cardelli, “Three-
dimensional calculation of the magnetic field created by current-
carrying massive disks,” IEEE Trans. Magn., Vol. 34, No. 5, 2601–
2604, 1998.

26. Brissonneau, P., Magnétisme et Matériaux Magnétiques pour
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