Vol. 99
Latest Volume
All Volumes
PIER 180 [2024] PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2009-11-23
Study STAP Algorithm on Interference Target Detect Under Nonhomogenous Environment
By
Progress In Electromagnetics Research, Vol. 99, 211-224, 2009
Abstract
In conventional statistical STAP algorithms, the existence of interference target in training samples will lead to signal cancellation, resulting in the output SCR falling and the moving target detection performance degrading. The nonhomogeneity detector is an effective way to restrain the outlier, which can improve the covariance matrix estimation by detecting the samples containing outliers and rejecting them, and improve the STAP performance. A new interference target detection algorithm is proposed in this paper, the outlier detection is realized by using the samples' data phase information. Compared with traditional method, the improved algorithm is more sensitive to interfering target with different azimuth and intensity. Simulation results demonstrate the validity of this improved method.
Citation
Qingyong Gong, and Zhao-Da Zhu, "Study STAP Algorithm on Interference Target Detect Under Nonhomogenous Environment," Progress In Electromagnetics Research, Vol. 99, 211-224, 2009.
doi:10.2528/PIER09101502
References

1. Babayigit, B., K. Guney, and A. Akdagli, "A clonal selection algorithm for array pattern nulling by controlling the positions of selected elements," Progress In Electromagnetic Research B, Vol. 6, 257-266, 2008.
doi:10.2528/PIERB08031218

2. Rocca, P., L. Manica, and A. Massa, "An effective excitation matching method for the synthesis of optimal compromises between sum and difference patterns in planar arrays," Progress In Electromagnetics Research B, Vol. 3, 115-130, 2008.
doi:10.2528/PIERB07120403

3. Mahanti, G. K., A. Chakraborty, and S. Das, "Design of fully digital controlled reconfigurable array antennas with fixed dynamic range ratio," Journal of Electromagnetic Waves and Applications, Vol. 21, No. 1, 97-106, 2007.
doi:10.1163/156939307779391768

4. Guney, K. and M. Onay, "Amplitude-only pattern nulling of linear antenna arrays with the use of bees algorithm," Progress In Electromagnetics Research, Vol. 70, 21-36, 2007.
doi:10.2528/PIER07011204

5. Zhai, Y. W., X. W. Shi, and Y. J. Zhao, "Optimized design of ideal and actual transformer based on improved micro-genetic algorithm," Journal of Electromagnetic Waves and Applications, Vol. 21, 1761-1771, 2007.

6. Chen, T. B., Y. L. Dong, Y. C. Jiao, et al. "Synthesis of circular antenna array using crossed particle swarm optimization algorithm ," Journal of Electromagnetic Waves and Applications, Vol. 20, 1785-1795, 2006.
doi:10.1163/156939306779292273

7. Mouhamadou, M., P. Vaudon, and M. Rammal, "Progress In Electromagnetics Research," Smart antenna array patterns synthesis: Null steering and multi-user beamforming by phase control, Vol. 60, 95-106, 2006.

8. Qu, Y., G. Liao, S.-Q. Zhu, and X.-Y. Liu, "Pattern synthesis of planar antenna array via convex optimization for airborne forward looking radar," Progress In Electromagnetics Research, Vol. 84, 1-10, 2008.
doi:10.2528/PIER08060301

9. Ward, J., Space-time adaptive processing for airborne radar, Technical report 1015, Lincoln Laboratory, MIT, 1994.

10. Aissa, B., M. Barkat, B. Atrouz, et al. "An adaptive reduced rank stap selection with staggered prf, effect of array dimensionality," Progress In Electromagnetics Research C, Vol. 6, 37-52, 2009.
doi:10.2528/PIERC08121601

11. Melvin, W. L. and M. C. Wicks, "Improving practical spacetime adaptive radar," Proceedings of 1997 IEEE National Radar Conference, 48-53, Syracuse, New York, 1997.

12. Little, M. O. and W. P. Berry, "Real-time multichannel airborne radar measurements," Proceedings of 1997 IEEE National Radar Conference, 138-142, Syracuse, New York, 1997.

13. Adve, R. S., T. B. Hale, and M. C. Wicks, "Transform domain localized processing using measured steering vectors and non-homogeneity detection," Proceedings of the IEEE National Radar Conference, 285-290, Boston, MA, April 1999.

14. Wang, Y. L., et al. "Robust space-time adaptive processing for airborne radar in nonhomogeneous clutter environments," IEEE Transactions on Aerospace and Electronic Systems, Vol. 39, No. 1, 71-81, January 2003.

15. Gerlach, K. and M. L. Picciolo, "Robust STAP using reiterative censoring," Proceedings of the IEEE National Radar Conference, 244-251, Huntsville, AL, May 5-8, 2003.

16. Gerlach, K., S. D. Blunt, and M. L. Picciolo, "Robust adaptive matched filtering using the FRACTA algorithm," IEEE Transactions on Aerospace and Electronic Systems, Vol. 40, No. 3, 929-945, 2004.
doi:10.1109/TAES.2004.1337465

17. Blun, S. D., K. Gerlach, and M. Rangaswamy, "STAP using knowledge-aided covariance estimation and the FRACTA algorithm," IEEE Transactions on Aerospace and Electronic Systems, Vol. 42, No. 3, 1043-1057, 2006.
doi:10.1109/TAES.2006.248197

18. Shackelford, A. K., K. Gerlach, and S. D. Blunt, "Partially adaptive STAP using the FRACTA algorithm," IEEE Transactions on Aerospace and Electronic Systems, Vol. 45, No. 1, 58-69, 2009.
doi:10.1109/TAES.2009.4805263

19. Gerlach, K., "Outlier resistant adaptive matched filtering," IEEE Transactions on Aerospace and Electronic Systems, Vol. 38, No. 3, 885-901, 2002.
doi:10.1109/TAES.2002.1039406

20. Reed, I. S., J. Mallet, and L. Brennan, "Rapid convergence rate in adaptive arrays," IEEE Transactions on Aerospace and Electronic Systems , Vol. 10, No. 6, 853-863, 1974.
doi:10.1109/TAES.1974.307893

21. Melvin, W. L. and J. R. Guerci, "Adaptive detection in dense target environment," Proceedings of the 2001 IEEE Radar Conference, 187-192, 2001.

22. Dong, R. J., Study of nonhomogeneous STAP and its application to airborne radar, PhD. thesis, Xidian University, China, 2000.