Vol. 98
Latest Volume
All Volumes
PIER 180 [2024] PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2009-10-27
Plasmons and Diffraction of an Electromagnetic Plane Wave by a Metallic Sphere
By
Progress In Electromagnetics Research, Vol. 98, 97-118, 2009
Abstract
The di®raction of a plane electromagnetic wave by an ideal metallic sphere (Mie's theory) is investigated by a new method. The method represents the charge disturbances (polarization) by a displacement field in the positions of the mobile charges (electrons) and uses the equation of motion for the polarization together with the electromagnetic potentials. We employ a special set of orthogonal functions, which are combinations of spherical Bessel functions and vector spherical harmonics. This way, we obtain coupled integral equations for the displacement field, which we solve. In the non-retarded limit (Coulomb interaction) we get the branch of "spherical" (surface) plasmons at frequencies ω = ωpsqrt(l/(2(l/ + 1)), where ωp is the (bulk) plasma frequency and l = 1, 2,.... When retardation is included, for an incident plane wave, we compute the field inside and outside the sphere (the scattered field), the corresponding energy stored by these fields, Poynting vector and scattering cross-section. The results agree with the so-called theory of "effective medium permittivity", although we do not start the calculations with the dielectric function. In turn, we recover in our results the well-known dielectric function of metals. We have checked the continuity of the tangential components of the electric field and continuity of the normal component of the electric displacement at the sphere surface, as well as the conservation of the energy flow and re-derived the "optical theorem". In the limit of small radii (in comparison with the electromagnetic wavelength) the sphere exhibits a series of resonant absorptions at frequencies close to the plasmon frequencies given above. For large radii these resonances disappear.
Citation
Marian Apostol, and Georgeta Vaman, "Plasmons and Diffraction of an Electromagnetic Plane Wave by a Metallic Sphere," Progress In Electromagnetics Research, Vol. 98, 97-118, 2009.
doi:10.2528/PIER09100103
References

1. Mie, G., "Beitrage zur optik truber medien, speziell kolloidaler metallosungen," Ann. Physik, Vol. 25, 377-445, 1908.
doi:10.1002/andp.19083300302

2. Van De Hulst, H. C., Light Scattering by Small Particles, Wiley, 1957.

3. Doyle, W. T. and A. Agarwal, "Optical extinction of metal spheres," J. Opt. Soc. Am., No. 55, 305-309, 1965.
doi:10.1364/JOSA.55.000305

4. Crowell, J. and R. H. Ritchie, "Radiation decay of Coulomb-stimulated plasmons in spheres," Phys. Rev., Vol. 172, 436-440, 1968.
doi:10.1103/PhysRev.172.436

5. Ashkin, A. and J. M. Dziedzic, "Observation of resonances in the radiation pressure on dielectric spheres," Phy. Rev. Lett., Vol. 38, 1351-1355, 1977.
doi:10.1103/PhysRevLett.38.1351

6. Chylek, P., J. T. Kiehl, and M. K. W. Ko, "Narrow resonance structures in the Mie scattering characteristics," Appl. Optics, Vol. 17, 3019-3021, 1978.
doi:10.1364/AO.17.003019

7. Conwell, P. R., P. W. Barber, and C. K. Rushforth, "Resonant spectra of dielectric spheres," J. Opt. Soc. Am., Vol. A1, 62-67, 1984.
doi:10.1364/JOSAA.1.000062

8. Marston, P. L. and J. H. Crichton, "Radiation torque on a sphere caused by a circularly-polarized electromagnetic wave," Phys. Rev., Vol. A30, 2508-2516, 1984.

9. Chang, S., J. T. Kim, J. H. Jo, and S. S. Lee, "Optical force on a sphere caused by the evanescent field of a Gaussian beam; Effects of multiple scattering," Optics Commun., Vol. 139, 252-261, 1997.
doi:10.1016/S0030-4018(97)00144-2

10. Ruppin, R., "Optical properties of small metallic spheres," Phys. Rev., Vol. B11, 2871-2876, 1975.

11. Messinger, B. J., K. U. Von Raben, R. K. Chang, and P. W. Barber, "Local fields at the surface of noble-metal microspheres," Phys. Rev., Vol. B24, 649-657, 1981.

12. Arnold, S., A. B. Pluchino, and K. M. Leung, "Influence of surface-mode-enhanced local fields on photophoresis," Phys. Rev., Vol. A29, 654-660, 1984.

13. Brechignac, C., P. Cahuzac, J. Leygnier, and A Sarfati, "Optical response of large lithium clusters: Evolution toward the bulk," Phys. Rev. Lett., Vol. 70, 2036-2039, 1993.
doi:10.1103/PhysRevLett.70.2036

14. Markowicz, P., K. Kolwas, and M. Kolwas, "Experimental determination of free-electron plasma damping rate in large sodium clusters," Phys. Lett., Vol. A236, 543-547, 1997.

15. Brechignac, C., P. Cahuzac, N. Kebaili, J. Leygnier, and H. Yoshida, "Interband effect in the optical response of strontium clusters," Phys. Rev., Vol. B61, 7280-7283, 2000.

16. Apostol, M. and G. Vaman, "Electromagnetic field interacting with a semi-infinite plasma," J. Opt. Soc. Am., Vol. A26, 1747-1753, 2009.
doi:10.1364/JOSAA.26.001747

17. Born, M. and E. Wolf, Principles of Optics, Pergamon, 1959.

18. Lorentz, H. A., The Theory of Electrons, Leipzig, 1916.

19. Apostol, M. and G. Vaman, "Plasmons and polaritons in a semi-infinite plasma and a plasma slab," Physica B, in print.

20. Apostol, M. and G. Vaman, "Electromagnetic eigenmodes in matter. van der Waals-London and Casimir forces," J. Theor. Phys., Vol. 177, 1-12, 2009.

21. Edmonds, A. R., Angular Momentum in Quantum Mechanics, Princeton, 1957.

22. Blatt, J. M. and V. E. Weisskopf, Theoretical Nuclear Physics, Dover, 1991.

23. Erdelyi, A., Higher Transcendental Functions, Vol. 2, Bateman Project, McGraw-Hill, 1957.

24. Abramowitz, M. and I. A. Stegun, Handbook of Mathematical Functions, National Bureau of Standards, 1972.

25. Gradshteyn, I. S. and I. M. Ryzhik, Table of Integrals, Series and Products, 930, 8.533, Academic Press, New York, 2000.