
Progress In Electromagnetics Research, PIER 98, 97–118, 2009

PLASMONS AND DIFFRACTION OF AN ELECTRO-
MAGNETIC PLANE WAVE BY A METALLIC SPHERE

M. Apostol and G. Vaman

Department of Theoretical Physics
Institute for Atomic Physics
Magurele-Bucharest MG-6, P. O. Box MG-35, Romania

Abstract—The diffraction of a plane electromagnetic wave by an
ideal metallic sphere (Mie’s theory) is investigated by a new method.
The method represents the charge disturbances (polarization) by a
displacement field in the positions of the mobile charges (electrons)
and uses the equation of motion for the polarization together with
the electromagnetic potentials. We employ a special set of orthogonal
functions, which are combinations of spherical Bessel functions and
vector spherical harmonics. This way, we obtain coupled integral
equations for the displacement field, which we solve. In the non-
retarded limit (Coulomb interaction) we get the branch of “spherical”
(surface) plasmons at frequencies ω = ωp

√
l/(2l + 1), where ωp is

the (bulk) plasma frequency and l = 1, 2, . . .. When retardation
is included, for an incident plane wave, we compute the field inside
and outside the sphere (the scattered field), the corresponding energy
stored by these fields, Poynting vector and scattering cross-section.
The results agree with the so-called theory of “effective medium
permittivity”, although we do not start the calculations with the
dielectric function. In turn, we recover in our results the well-known
dielectric function of metals. We have checked the continuity of
the tangential components of the electric field and continuity of the
normal component of the electric displacement at the sphere surface,
as well as the conservation of the energy flow and re-derived the
“optical theorem”. In the limit of small radii (in comparison with
the electromagnetic wavelength) the sphere exhibits a series of resonant
absorptions at frequencies close to the plasmon frequencies given above.
For large radii these resonances disappear.
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1. INTRODUCTION

The diffraction of an electromagnetic plane wave by metallic spheres
has been thoroughly investigated long time ago by Mie [1]. The
main result of this investigation is a selective absorption of light by
small particles, for some frequencies which, thereafter, were associated
with the frequencies of the “spherical” plasmons [2–4]. Recently, the
subject enjoys a great deal of interest, in connection with plasmons
and polaritons in structures with restricted geometry, their role in the
diffraction of the electromagnetic wave and a possible enhancement of
the scattered field [5–15]. The physics underlying such phenomena
is entangled in the original Mie’s results with the mathematical
complexity of the problem. Though this degree of complexity is
unavoidable, we attempt herein to investigate the problem by a new
method, which, we hope, can be more enlightening. We compute the
“spherical” plasmons frequencies given by ω2 = ω2

p
l

2l+1 in the non-
retarded (Coulomb) limit, where ωp is the (bulk) plasma frequency
and l = 1, 2, . . .. Including retardation, for an incident plane wave, we
compute the fields inside and outside the sphere (the scattered field),
the energy stored by these fields, the Poynting vector, the scattering
cross-section, and, in general, we try to characterize as completely
as possible the interaction of the electromagnetic plane wave with
the metallic sphere. We put in evidence both the oscillating regime
and the damped regime for the field inside the sphere, identify the
polaritonic excitations and make connection with the so-called theory
of “effective medium permittivity”. We provide compact formulae for
such various quantities, which, essentially, are represented as series
of partial waves of (total) angular momentum l = 1, 2, . . .. These
formulae can readily be adapted to various particular cases. Such a
particular case is the small radius of the sphere (in comparison with
the electromagnetic wavelength), where the sphere interacting with
the electromagnetic field exhibits a series of resonances for frequencies
close to the frequencies of the “spherical” plasmons. For large radii
theses resonances disappear.

The method we use herein is based on representing the
polarization by a displacement field in the positions of the mobile
charges (electrons) and using the equation of motion for this
displacement field together with the electromagnetic potentials. The
method turns out to be pretty general, and we employed it recently
in studying the surface plasmons, the reflected and refracted fields
and the reflection coefficient for a semi-infinite metallic plasma [16].
The method does not require the introduction from the beginning of
the dielectric function of the medium, but we recover it in our final



Progress In Electromagnetics Research, PIER 98, 2009 99

results. Our procedure leads to coupled integral equations, which
seem to have been envisaged long ago in treating the interaction of
the electromagnetic field with matter [17]. By using adequate sets of
orthogonal functions we are able to solve these equations, and get final,
compact results.

We assume a generic model of metals, consisting of mobile charges
−e and mass m, moving in a rigid neutralizing background. We can
recognize here the well-known jellium-like plasma, which is an adequate
representation of an ideal metal in the range of optical frequencies. We
assume slight disturbances δn in the density of the charges, given by
δn = −ndivu, where n (constant) is the particles concentration and u
is a displacement field in the particles positions. Such a representation
is valid for displacements u much smaller than the wavelengths. These
density disturbances give rise to charge and current densities

ρ = endivu, j = −neu̇. (1)

We compute the electric field through E = −1
c

∂A
∂t − gradΦ, where the

well-known vector and scalar potentials are given by

A =
1
c

∫
dr′

j (r′, t−|r−r′| /c)
|r−r′| , Φ =

∫
dr′

ρ (r′, t−|r−r′| /c)
|r− r′| . (2)

The displacement field u is subjected to the equation of motion

mü = −e (E + E0) , (3)

where E0 is an external field, or, by using a temporal Fourier transform,

ω2u =
e

m
(E + E0) . (4)

It is easy to see, by making use of the Maxwell equation divE =
4πρ, that Equation (3) gives the well-known dielectric function ε =
1 − ω2

p/ω2 for a bulk plasma, where ωp =
√

4πne2/m is the plasma
frequency. The internal (polarizing) field is given by E = 4πneu.
Similarly, the equation of motion (3) and the Maxwell equation given
above lead to the well-known conductivity σ = ine2/mω. In this
treatment we leave aside the magnetization, relativistic effects and
dissipation.

The general idea of our procedure can be described as follows.
We compute the electric field by Equation (2) and get it as an integral
containing the displacement field u. Then, we express this electric field
through u by using Equation (3) and get an integral equation for u,
which we solve. It is such an integral-equation procedure that seems to
have been suggested long ago in investigating the electromagnetic field
interacting with matter [17], in connection with the so-called Ewald-
Oseen extinction theorem. At the same time, we can recognize the
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elementary theory of classical dispersion in our using of the equation
of motion (3) together with Maxwell’s equations [18]. Making use
of this theory, it is easy to see that the equation of motion (3)
can easily be extended to simulate also the behaviour of a simple,
classical dielectric, or to include the dissipation. Beside having applied
this procedure to a semi-infinite body (half space) [16], we used it
also for a slab of finite thickness [19], where we have calculated the
dielectric response, the surface plasmons, the refracted, reflected and
transmitted waves, surface plasmon-polariton modes, reflection and
transmission coefficients, and derived generalized Fresnel relations. For
such bodies with finite boundaries, we get coupled integral equations
for the components of the displacement vector, which we solve by
using suitable sets of orthogonal functions. In addition, we have
also calculated the eigenmodes of such equations and derived van der
Waals-London and Casimir forces acting between a pair of semi-infinite
bodies [20]. We apply herein this treatment to an ideal spherical
metallic particle, and compute the field everywhere in space, as was
the original aim of Mie theory.

2. COULOMB INTERACTION

We do the calculations in two steps. First, we consider the non-
retarded (Coulomb interaction), thereafter we include the retardation.
In the former case, the equation of motion (4) reads

ω2u = − 1
4π

ω2
pgrad

∫
dr′

divu(r′)
|r− r′| +

e

m
E0. (5)

For a sphere of radius a, the displacement field u becomes

u → uθ(a− r), (6)

where θ(x) = 1 for x > 0 and θ(x) = 0 for x < 0 is the step function.
We get

divu → divuθ(a− r) + ur(a)δ(r − a), (7)

where ur(a) = ur(r = a) is the radial component of the field u at
r = a. We can see the occurrence of the (de)polarizing field associated
with ur(a). We use the well-known decomposition

1
|r− r′| = 4π

∑

lm

1
2l + 1

rl
<

rl+1
>

Y ∗
lm(θ′, ϕ′)Ylm(θ, ϕ) (8)

of the Coulomb potential in spherical harmonics, where r< = min(r, r′)
and r> = max(r, r′). The main ingredient of our calculations is the
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expansion

u(r)=
∑

lm

[
u0

lm(r)Yllm(θ, ϕ)+u−lm(r)Yll−1m(θ, ϕ)+u+
lm(r)Yll+1m(θ, ϕ)

]

(9)
of the displacement field in vector spherical harmonics [21, 22]. We
make an extensive use of the properties of these functions, as given in
Ref. [21]. Some of the formulae used here are included in Appendix A.
In particular, we recall that their divergence, involved in Equation (5),
is related to (scalar) spherical harmonics, so that, by using the
expansion (8) and the orthogonality of the spherical harmonics, we
express the integral in Equation (5) in terms of spherical harmonics.
Then we recall that the gradient of the latter functions is related to
vector spherical harmonics, so we recover these functions in the rhs
of Equation (5). Doing so, we are left with integral equations which
imply integrations only with respect to the radial variable. We get
u0

lm = 0 and

ω2

ω2
p

u−lm =
l

2l + 1
u−lm −

√
l(l+1)

2l + 1
u+

lm+
√

l(l+1)rl−1

∫ a

r
dr′

1
r′l

u+
lm(r′)

− 1
4πne

√
l

2l + 1

(
d

dr
Φlm +

l + 1
r

Φlm

)
,

ω2

ω2
p

u+
lm =

l+1
2l+1

u+
lm−

√
l(l+1)

2l + 1
u−lm+

√
l(l+1)

1
rl+2

∫ r

0
dr′r′l+1u−lm(r′)

+
1

4πne

√
l + 1
2l + 1

(
d

dr
Φlm − l

r
Φlm

)
,

(10)

where we have introduced the external potential Φ (expanded in
spherical harmonics) through E0 = −gradΦ.

The solutions of these coupled equations can be found as series of
powers rn, for n = 0, 1, 2 . . ., of the form

u±lm =
∑

n=0

u±lm(n)rn. (11)

We get u+
lm(n) = 0, the eigenfrequencies

ω = ωp

√
l

2l + 1
(12)

and
u−lm(n) = − 1

4πne

√
l(2l + 1)

Φlm(l)
ω2

ω2
p
− l

2l+1

δn,l−1, (13)



102 Apostol and Vaman

which represents the dielectric response of the sphere. It is worth
noting that for a descending series in powers of rn (negative integers
n) in Equation (11) we get the eigenfrequencies

ω = ωp

√
l + 1
2l + 1

, (14)

which correspond to a metallic void of radius a. Both these modes are
surface, or “spherical” plasmons.

Making use of Equation (13) we find the displacement u and the
internal (depolarizing) field

E =
ω2

ω2 − ω2
p/3

E0 (15)

for an external field E0 oriented along the z-axis. One can see
that 1 − ω2

p/3ω2 can be viewed as the dielectric function for the
l = 1− partial wave.

3. EXTERNAL PLANE WAVE. THE FIELD INSIDE THE
SPHERE

We pass now to the retarded case. In Equation (4), we consider a plane
wave E0 = E0exeikz for the external field, with frequency ω = ck,
propagating along the z-axis; ex is the unit vector along the x-axis.
We compute the electric field E from the electromagnetic potentials A
and Φ given by Equation (2), by making use of the charge and current
densities given by Equation (1). We assume the same decomposition
given by Equation (9) for the displacement field as a series of vector
spherical harmonics.

It is very convenient to introduce the functions

Flmk(r) = jl(kr)Ylm(θ, ϕ), Hlmk(r) = hl(kr)Ylm(θ, ϕ), (16)

where jl(kr) and hl(kr) are the spherical Bessel functions of the first
and, respectively, third rank (the Hankel functions) [23, 24]. Their
definition, together with recurrence relations, asymptotic behaviour
and other formulae used in our calculations are included in Appendix
B. The following decomposition holds [25]

eik|r−r′|

|r− r′| =
ik

4π

∑

lm

F ∗
lmk(r

′)Hlmk(r), r > r′ (17)

for the “retarded” Coulomb potential appearing in the electromagnetic
potentials. We use this decomposition for computing the scalar
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potential Φ. We define also the vector functions

F0
lmk(r) =jl(kr)Yllm(θ, ϕ),

F+
lmk(r) =

1√
2l+1

[√
ljl+1(kr)Yll+1m(θ, ϕ)

+
√

l+1jl−1(kr)Yll−1m(θ, ϕ)
]
,

F−lmk(r) =
1√

2l+1

[√
ljl−1(kr)Yll−1m(θ, ϕ)

−
√

l+1jl+1(kr)Yll+1m(θ, ϕ)
]

(18)

and a similar set of vector functions Hq
lmk, q = 0,±, by replacing jl by

hl in Equation (18). We have the decomposition

eik|r−r′|

|r− r′| =
ik

4π

∑

lmq

Fq∗
lmk(r

′)Hq
lmk(r), r > r′, (19)

which we use in computing the vector potential A. The functions Flmk

are orthogonal, complete and regular in the origin, while Hlmk are not
regular in the origin and, together with Flmk, form a complete set for
any region excluding the origin.

We insert the representation given by Equation (17) in the scalar
potential Φ, use the orthogonality of the spherical harmonics, perform
the integrations by parts for the radial derivatives of the functions u±lm,
reduce the boundary terms, and use Equations (B6) for the derivatives
of the Bessel functions. Thereafter we compute the corresponding
electric field, arising from the scalar potential, by using the gradient
formula given in Equation (A5), and recover the vector spherical
harmonics. We do similar calculations for the vector potential A, by
using Equation (19), and get the corresponding electric field. In this
calculation Equations (B6) and (B7) are very useful.

Thereafter, we introduce the electric field E, obtained according
to the above description, in the equation of motion (4), and use the
decomposition of the external field E0 in vector spherical harmonics
as given in Appendix C. We identify the coefficients of the vector
spherical harmonics in this equation and get two sets of integral
equations for the amplitudes u0,±

lm . The first set consists of one equation

i(−1)l16π2c2

ω2
pk

u0
lm(r) = hl(kr)

∫ r

0
dr′r′2jl(kr′)u0

lm(r′)

+jl(kr)
∫ a

r
dr′r′2hl(kr′)u0

lm(r′)
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+
i(−1)l√π

nek3
E0

√
2l + 1jl(kr) (δm,1 + δm,−1) . (20)

The second set consists of two coupled integral equations. The first is
(−1)l16π2c2

ω2
p

u−lm(r) =
(−1)l16π2

(2l + 1)k2

[
lu−lm(r)−

√
l(l + 1)u+

lm(r)
]

+ik

√
l+1

2l+1
hl−1(kr)

∫ r

0
dr′r′2

[√
l+1jl−1(kr′)u−lm(r′)+

√
ljl+1(kr′)u+

lm(r′)
]

+ik

√
l+1

2l+1
jl−1(kr)

∫ a

r
dr′r′2

[√
l+1hl−1(kr′)u−lm(r′)+

√
lhl+1(kr′)u+

lm(r′)
]

+
(−1)l√π

nek2
E0

√
l + 1jl−1(kr) (−δm,1 + δm,−1) (21)

and the second equation is given by
(−1)l16π2c2

ω2
p

u+
lm(r) =

(−1)l16π2

(2l + 1)k2

[
(l + 1)u+

lm(r)−
√

l(l + 1)u−lm(r)
]

+ik

√
l

2l+1
hl+1(kr)

∫ r

0
dr′r′2

[√
l+1jl−1(kr′)u−lm(r′)+

√
ljl+1(kr′)u+

lm(r′)
]

+ik

√
l

2l+1
jl+1(kr)

∫ a

r
dr′r′2

[√
l+1hl−1(kr′)u−lm(r′)+

√
lhl+1(kr′)u+

lm(r′)
]

+
(−1)l√π

nek2
E0

√
ljl+1(kr) (−δm,1 + δm,−1) . (22)

We pass now to solving these equations. We take the second
derivative in Equation (20) with respect to r and eliminate the
intervening integrals by using Equation (20) and its first derivative
with respect to r. Then, we use Equations (B6) and (B7) to get

r2 d2

dr2
u0

lm + 2r
d

dr
u0

lm +
[
k2

1r
2 − l(l + 1)

]
u0

lm = 0, (23)

which is the Bessel equation for jl(k1r), where

k1 =
1
c

√
ω2 − ω2

p. (24)

We have therefore u0
lm ∼ jl(k1r), where the coefficient is determined

from Equation (20). Making use of Equation (B2) we get

u0
lm = Almjl(k1r), (25)

where

Alm =
(−1)l+1

√
π(2l+1)cω2

pE0

nea2ω3
· (δm,1 + δm,−1)
k1hl(ka)jl+1(k1a)−khl+1(ka)jl(k1a)

.

(26)
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In order to solve the system of Equations (21) and (22) we
introduce two new functions defined by

Ulm =
√

lu−lm −
√

l + 1u+
lm,

rVlm =
√

l(l − 1)u−lm +
√

l + 1(l + 2)u+
lm.

(27)

These combinations of amplitudes appear in divuθ(a−r), Equation (7),
and we find easily, by Equations (21) and (22), the relation ∂Ulm

∂r = Vlm.
This relation expresses the vanishing of the volume charge, as expected
for a transverse field. Making use of this relation, we reduce the system
of Equations (21) and (22) to only one equation for Ulm, which we solve
following the same method as the one described above for the function
u0

lm. We get

r2 d2

dr2
Ulm + 4r

d

dr
Ulm +

[
k2

1r
2 − l(l + 1) + 2

]
Ulm = 0, (28)

whose solution is Ulm ∼ jl(k1r)/r. We determine the amplitude of this
solution from the integral equation for Ulm and then, making use of
Equation (27), we get the fields u±lm. These fields are given by

u+
lm(r) =

Blm√
l + 1

jl+1(k1r), u−lm(r) =
Blm√

l
jl−1(k1r), (29)

where

Blm =
(−1)l+1

√
πl(l + 1)c3k1E0

nea2ω3

· (−δm,1 + δm,−1)[(
−ω2

ω2
p
+ l

2l+1

)
hl+1(ka)+ l+1

2l+1hl−1(ka)
]
jl(k1a)+ ω2k1

ω2
pk

hl(ka)jl+1(k1a)
. (30)

We put these results in a more compact and symmetrical form by
introducing the notations

Alm =
e

mω2
E0Alalm, Blm =

e

mω2
E0

√
l(l + 1)
2l + 1

Blblm, (31)

where alm and blm are the amplitudes of the plane wave given by
Equation (C4),

Al =
16π2(−1)l+1c

ωa2
· 1
k1hl(ka)jl+1(k1a)− khl+1(ka)jl(k1a)

(32)

and

Bl =
16π2(−1)l+1c3k1

ω2
pωa2

· 1[(
−ω2

ω2
p
+ l

2l+1

)
hl+1(ka)+ l+1

2l+1hl−1(ka)
]
jl(k1a)+ω2k1

ω2
pk

hl(ka)jl+1(k1a)
. (33)
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With these notations the displacement field can be written as

u(r) =
e

mω2
E0

∞∑

l=1m

[
AlalmF0

lmk1
(r) + BlblmF+

lmk1
(r)

]
(34)

and the field inside the sphere is given by

Ei(r) =
mω2

e
u(r) = E0

∞∑

l=1m

[
AlalmF0

lmk1
(r) + BlblmF+

lmk1
(r)

]
. (35)

We can see from the above equations that the external field E0 is
modified inside the sphere, by the coefficients Al and Bl, and replaced
by the total field Ei = E + E0, which goes like the spherical Bessel
functions jl,l±1(k1r), where the “wave number” k1 = 1

c

√
ω2 − ω2

p

is different than k = ω/c. This is an illustration of the so-called
Ewald-Oseen extinction theorem [17]. In addition, the field inside the
sphere is either oscillating, for k1 real (ω > ωp), or damped, for k1

purely imaginary (ω < ωp); in the latter case there will appear the
modified Bessel functions in the above formulae. We note also that
Equation (24) which gives the “wave number” k1, can also be written
as c2k2

1 = εω2, where ε = 1−ω2
p/ω2 is the dielectric function of a metal.

We get ω2 = c2k2
1 + ω2

p from this equation, which is the dispersion
relation of polaritons in metals. The dispersion relationship c2k2

1 = εω2

is well-known in the theory of “effective medium permittivity”.
Making use of Hi = (−i/k)curlEi and Equation (A6) we get the

magnetic field inside the sphere

Hi(r) = iE0

∞∑

l=1m

[
AlalmF+

lmk1
(r) + BlblmF0

lmk1
(r)

]
, (36)

which allows the calculation of the energy

Wi =
1

16π

∫ a

0
dr · r2

∫
dΩ

(
|Ei|2 + |Hi|2

)
(37)

stored inside the sphere. Using the orthogonality of the vector spherical
harmonics this energy can be written as

Wi =
1

16π
E2

0

∞∑

l=1m

(
|Alalm|2 + |Blblm|2

)

·
[∫ a

0
dr·r2

(
|jl(k1r)|2+

l

2l+1
|jl+1(k1r)|2+

l + 1
2l+1

|jl−1(k1r)|2
)]

, (38)

where the integrals can be computed with the aid of formula (B3).
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We can compute also the Poynting vector defined as the real part
of Si = (c/8π) (Ei ×H∗

i ). We limit ourselves to the radial component
(Si)r, which gives the radial flow

Qi =
∫

dΩ(Si)r , (39)

where the integration is performed over the solid angle Ω. It can
be calculated easily by using Equations (A10) and (A11) and the
orthogonality of the vector spherical harmonics. We get

Qi =
c

8π
E2

0

∞∑

l=1m

(
|Alalm|2 + |Blblm|2

)

·jl(k1r)
[

l

2l + 1
j∗l+1(k1r) +

l + 1
2l + 1

j∗l−1(k1r)
]

. (40)

It is easy to see that this expression is purely imaginary, i.e., the net
radial flow through the sphere is vanishing, as expected for such an
ideal (non-dissipative) plasma. It is easy to compare Equation (40)
with the radial flow Q0 of the plane wave (obtained by putting formally
Al = Bl = 1 in Equation (40)), which is also vanishing.

4. THE SCATTERED FIELD

Having known the displacement field u given by Equation (34) we
can compute the scattered electric field, i.e., the field created outside
the sphere by charges and currents, via Equations (1) and (2).
In the electromagnetic potentials we use again the decompositions
given by Equations (17) and (19), employ the orthogonality of the
spherical harmonics and integrals given by Equation (B2) for the Bessel
functions, together with recurrence relations of the type (B6) and (B7).
We get the scattered field

Es(r) =
ka2

16π2
E0

∞∑

l=1m

[
Alalmf0

l H0
lmk(r) + Blblmf+

l H+
lmk(r)

]
, (41)

where
f0

l = (−1)l [k1jl(ka)jl+1(k1a)− kjl+1(ka)jl(k1a)] (42)

and

f+
l = (−1)l

[
kjl(ka)jl+1(k1a)−k1jl+1(ka)jl(k1a)

− iω2
p(l+1)

c2kk1a
jl(ka)jl(k1a)

]
. (43)
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We note again the modification of the incident plane wave in the
scattered field, through the coefficients Al, Bl and f0,+

l . The scattered
field contains the propagating functions hl,l±1 (Hankel functions), with
the wavevector k = ω/c.

We have checked that the scattered field obtained above is the
same as the scattered field from Mie’s theory, as given in Ref. [17]. The
coefficients eBl and mBl in Mie’s theory are related to our coefficients
Al, Bl and f0,+

l through

mBl = − il+1(2l + 1)
16π2l(l + 1)

ka2Alf
0
l ,

eBl = − il+1(2l + 1)
16π2l(l + 1)

ka2Blf
+
l .

(44)

Making use of the relations (A10) and (A11) it is easy to prove the
continuity of the tangential spherical components of the electric field
at the sphere surface, i.e.,

(Ei)θ,ϕ |r=a = (E0 + Es)θ,ϕ |r=a . (45)

Similarly, using relations (A8) and (A9) it is easy to get the continuity
of the electric displacement

(
1− ω2

p

ω2

)
(Ei)r |r=a = (E0 + Es)r |r=a , (46)

where we recognize the dielectric function ε = 1 − ω2
p/ω2. This

result emphasizes again the validity of the theory of “effective medium
permittivity”.

Making use of the same Equations (A8)–(A11) and the asymptotic
behaviour of the function hl(kr) given by Equation (B5), it is easy to
show that the radial component of the scattered field goes like∼ 1/r2 at
large distances, while the tangential components go like ∼ 1/r. Indeed,
at large distances the scattered field is practically a transverse field. It
is also easy to check that (Es)ϕ ∼ sinϕ and (Es)θ ∼ cosϕ, which give
the degree of polarization for an arbitrary azimuthal angle ϕ.

In the same manner as for the field inside the sphere we can
compute the scattered magnetic field, the energy stored by this field
and the Poynting vector. The scattered magnetic field is given by

Hs(r) =
ika2

16π2
E0

∞∑

l=1m

[
Alalmf0

l H+
lmk(r) + Blblmf+

l H0
lmk(r)

]
(47)
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and the stored energy can be written as

Ws =
1

16π

(
ka2

16π2

)2

E2
0

∞∑

l=1m

(∣∣Alalmf0
l

∣∣2 +
∣∣Blblmf+

l

∣∣2
)

·
[∫ ∞

a
dr · r2

(
|hl(kr)|2+

l

2l+1
|hl+1(kr)|2+

l+1
2l+1

|hl−1(kr)|2
)]

.(48)

The radial flow of energy is given by the real part of

Qs =
∫

dΩ (Ss)r =
c

8π

(
ka2

16π2

)2

E2
0

∞∑

l=1m

(∣∣Alalmf0
l

∣∣2 +
∣∣Blblmf+

l

∣∣2
)

·hl(kr)
[

l

2l + 1
h∗l+1(kr) +

l + 1
2l + 1

h∗l−1(kr)
]

. (49)

This quantity is not vanishing anymore. In fact it defines the
scatterring cross-section (or the relative scatterred intensity)

σ = Re
[
r2 Qs

|S0| |r→∞
]

=
a4

16π2

∞∑

l=1m

(∣∣Alalmf0
l

∣∣2+
∣∣Blblmf+

l

∣∣2
)

, (50)

where |S0| = 1
8πE2

0 is the modulus of the Poynting vector of the incident
wave. It can be checked straightforwardly, by direct calculations, that
(the real part of) the cross-product contribution to the flow

Q
′
s =

∫
dΩ(E0 ×H∗

s + Es ×H∗
0)r =

c

8π

(
ka2

8π2

)(
E2

0

16π

)

∞∑

l=1

{(
Alf

0
l + Blf

+
l

)
hl(kr)

[
lj∗l+1(kr) + (l + 1)j∗l−1(kr)

]

+
(
A∗l f

0∗
l + B∗

l f+∗
l

)
jl(kr)

[
lh∗l+1(kr) + (l + 1)h∗l−1(kr)

]}
(51)

cancels out exactly the contribution ReQs given above for the
scattering field, i.e., ReQ

′
s + ReQs = 0, leading thereby to a vanishing

total net flow outside the sphere, in agreement with the vanishing flow
of the external field and the field inside the sphere.

Moreover, for large distances the flow Q
′
s given above can be

written as

Q
′
s ∼ r→∞

c

8π

E2
0a2

8πkr2

∞∑

l=1

(2l + 1)
[
Re

(
Alf

0
l + Blf

+
l

)

+iIm
(
Alf

0
l + Blf

+
l

)
e2i(kr−lπ/2)

]
, (52)
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while the forward scattered field becomes

[Es(θ = 0)]x ∼r→∞ − iE0a
2

32π2

eikr

r

∞∑

l=1

(2l + 1)
(
Alf

0
l + Blf

+
l

)
; (53)

if we denote by Ef the amplitude of the spherical wave in this equation,
and compare the two Equations (52) and (53), we get

r2ReQ
′
s = −E0

c

2k
ImEf , (54)

or, making use of Equation (50) and the flow balance ReQ
′
s+ReQs = 0,

σ =
4π

kE0
ImEf , (55)

which is the well-known “optical theorem” [17].

5. DISCUSSION AND CONCLUSIONS

The results presented in this paper are cast in the form of well-
known series of partial waves, with respect to the angular momentum
number l = 1, 2, . . .. We emphasize that this is the total angular
momentum, arising from the coupling of the orbital momentum to
the angular momentum 1. The latter reflects the vectorial character of
the electromagnetic field, and the effect of the coupling can be seen, for
instance, from the occurrence of the l ± 1-partial waves and from the
lowest value l = 1 acquired by this label. The partial-waves expansions
(which essentially are multipole expansions) were attained by means of
the orthonormal functions F0,±

lmk, supplemented by H0,±
lmk, which form

together a complete set. The field inside the sphere is regular in the
origin, and is represented by functions F0,+

lmk, while the scattered field
is propagating and is represented by functions H0,+

lmk. The functions
F−lmk and H−

lmk do not appear, because they are associated with a net
charge. The terms containing F0

lmk (H0
lmk) correspond to magnetic

multipoles (TE), while those containing F+
lmk (H+

lmk) correspond to
electric multipoles (TM).

We have computed these fields for a plane wave incident on an
ideal metallic sphere and recover, in a different form, the original
results of Mie’s theory. We have also computed the energy stored
by such fields, their Poynting vector, the scattering cross-section
(scattered intensity), and checked the well-known continuity conditions
at the surface of the sphere and the balance of the energy flow. We
re-derived also the well-known “optical theorem”. We do not introduce
the dielectric function from the beginning in our calculations, but



Progress In Electromagnetics Research, PIER 98, 2009 111

we recover the results of the so-called theory of “effective medium
permittivity” in our final results. This is possible due to our different
method of calculation, which employs the equation of motion for the
polarization and the electromagnetic potentials. The characteristic
feature of this method consists in the fact that it leads to coupled
integral equations, which we solved.

We have presented the results, more or less, in a compact form.
Various particular cases can be derived from our results, by using
well-known definitions and properties of, essentially, the spherical
harmonics, the vector spherical harmonics and the spherical Bessel
functions. It is worth noting that the fields given by us exhibit the
corresponding modifications of the incident plane wave (decomposed in
partial waves) through our coefficients Al, Bl given by Equations (32)
and (33), and the coefficients f0,+

l given by Equations (42) and (43).
A case of interest is the limit of small radii, i.e., ka ¿ 1. For

realistic values of the bulk plasma frequency ωp, the “wave number” k1

inside the sphere acquires purely imaginary values, i.e., k1 = iα1, where
α1 = 1

c

√
ω2

p − ω2 ' ωp/c. The argument ak1 can then be written as
ak1 = iaα1 ' iaωp/c, which, in general, may not be small. Making use
of the asymptotic behaviour of the spherical Bessel functions given by
Equation (B4), we give here the leading contributions to the coefficients
Al, Bl, f0,+

l in the limit ka ¿ 1 and for any value of the k1a:

Al =
4π(ika)l

(2l + 1)!!jl(k1a)
,

Bl = 4π
ck1ω

ω2
p

· (ika)l

(
ω2

ω2
p
− l

2l+1

)
(2l + 1)!!jl(k1a)

,

f0
l = 4πk1

(−ika)l

(2l + 1)!!
jl+1(k1a),

f+
l = −4π

ω2
p

c2k1

(−ika)l−1(l + 1)
(2l + 1)!!

jl(k1a)

(56)

(where we have assumed jl(k1a) 6= 0). We can see that, in this
limit, the leading contributions correspond to l = 1 (so-called dipolar
contributions).

It is worth noting the resonances occurring in the denominator
of the coefficient Bl for frequencies ω = ωp

√
l/(2l + 1), which are the

frequencies of the “spherical” plasmons. They appear as singularities
in the fields, but, if the dissipation is included, these singularities are
smoothed out, the fields exhibit an enhancement, and the absorption is
very high. The dissipation can easily be included in the above formulae
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by changing ω2 into ω(ω + iγ), where the dissipation parameter γ is,
in general, much smaller than the relevant values of the frequencies
ω. The absorption is then related to the imaginary parts of the
singularities given above, and one can see easily that it is very high
(∼ 1/γ) at resonance.

It is worth investigating the dependence on radius of the
resonances found above. This can be achieved by taking the next-
to-leading contributions to the denominator of the coefficient Bl. We
get

ω2 = ω2
p

l

2l + 1
· 1

1 + iak1
jl+1(k1a)

(2l+1)jl(k1a)

. (57)

The resonance frequencies ω = ωp

√
l/(2l + 1) are of the same order

of magnitude as ωp. It follows that aωp/c can also be taken as being
much lesser than unity, i.e., aα1 ¿ 1 in ak1 = iaα1 ' iaωp/c. Then,
Equation (57) yields

ω2 ' ω2
p

l

2l + 1

[
1− 1

(2l + 1)(2l + 3)
(aωp/c)2

]
, (58)

which, within these limiting case, gives the radius dependence of the
resonance frequencies. However, a word of caution must be inserted
here, regarding such series expansions. For practical situations the
“small radius” condition ka = aω/c ¿ 1 might not be fulfilled
for resonance frequencies ω ∼ ωp

√
l/(2l + 1), so, actually, the series

expansions are not valid, and the resonances remain to be estimated
numerically. In the opposite limit ka À 1 these resonances disappear.

In conclusion, we may say that we computed the diffraction of an
electromagnetic plane wave by an ideal metallic sphere and recovered
the results of Mie’s theory. We did these calculations by a method
different than Mie’s method, which uses the boundary conditions at
the sphere surface and the dielectric function of the metal. By our
method we recover these “effective medium theory” results. We have
characterized as fully as possible, in compact formulae, the interaction
of the plane electromagnetic wave with the metallic sphere, and have
given additional results, like the field inside the sphere, the energy
stored by these fields, their Poynting vector, scattering cross-section
(scattered intensity) and have also checked the balance of the energy
flow. In addition, we have computed by our method the “spherical”
plasmons and put in evidence the diffraction resonances occurring at
frequencies close to these plasmons frequencies in the limit of small
radii.

The method used in this paper is not restricted to metallic spheres.
For dielectrics we replace ω2 in our formulae (including k1 given by
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Equation (24)) by ω2
p/(1 − ε) and use the dielectric function ε for

dielectrics. Within our method (without loss) it is represented as
ε = 1 + ω2

p/ω2
0, where both ωp and ω0 are parameters. Under these

circumstances, the resonances found above for a metallic sphere do
not appear anymore. Instead, for a dielectric sphere, there exist
small oscillations in the relevant coefficients Al, Bl, f0,±

l , arising by
a different mechanism which originates in the oscillatory behaviour of
the Bessel functions.
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APPENDIX A. VECTOR SPHERICAL HARMONICS

The vector spherical harmonics are defined by [21, 22]

YJlM =
∑
mq

Cl1(JM ;mq)Ylmeq, (A1)

where Cl1(JM ; mq) are the Clebsch-Gordan coefficients for the
coupling of the angular momenta lm and 1q to the angular momentum
JM , Ylm are (scalar) spherical harmonics and eq, q = 0,±1, are defined
by e± = ∓ 1√

2
(ex ± iey), e0 = ez; ex,y,z are unit vectors of the reference

frame. Obviously, J = l, l ± 1. The scalar spherical harmonics are
defined as in Ref. [21]

Ylm(θ, ϕ) = (−1)m

√
(2l + 1)(l −m)!

4π(l + m)!
Pm

l (cos θ)eimϕ, (A2)

where the associated Legendre polynomials are given by

Pm
l (x) =

(
1− x2

)m/2

2ll!
dl+m

dxl+m

(
x2 − 1

)l
. (A3)

The vector spherical harmonics are orthogonal functions over the
sphere. We give here a few useful formulae used in the main text [21]:

div (f(r)Yllm) = 0,

div (f(r)Yll−1m) =

√
l

2l + 1

(
d

dr
− l − 1

r

)
f(r)Ylm,

div (f(r)Yll+1m) = −
√

l + 1
2l + 1

(
d

dr
+

l + 2
r

)
f(r)Ylm

(A4)
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and

grad (f(r)Ylm) = −
√

l + 1
2l + 1

(
d

dr
− l

r

)
f(r)Yll+1m

+

√
l

2l + 1

(
d

dr
+

l + 1
r

)
f(r)Yll−1m. (A5)

for any arbitrary function f(r). We have also

curlF0
lmk = −kF+

lmk, curlF+
lmk = −kF0

lmk, curlF−lmk = 0 (A6)

and similar relations for H0,±
lmk, where F0,±

lmk and H0,±
lmk are defined in

the main text. Another useful formula is

erYlm =
1√

2l + 1

(√
lYll−1m −

√
l + 1Yll+1m

)
, (A7)

where er is the radial unit vector.
Making use of their definition (A1) and of the Clebsch-Gordan

coefficients we can compute the spherical components the vector
spherical harmonics [21, 22]. We give here a few useful formulae for
these spherical components. First we have

(Yllm)r = 0, (Yll−1m)r =

√
l

2l+1
Ylm, (Yll+1m)r =−

√
l+1
2l+1

Ylm (A8)

for the radial components, whence

(
F0

lmk

)
r

= 0,
(
F+

lmk

)
r

=

√
l(l + 1)
ikr

jl(kr)Ylm (A9)

and similar formulae for the functions H0,+
lmk, replacing jl by hl. We

have also

(Yll+1m)ϕ =−i

√
l

2l+1
(Yllm)θ , (Yll−1m)ϕ =−i

√
l+1
2l+1

(Yllm)θ (A10)

and

(Yll+1m)θ = i

√
l

2l+1
(Yllm)ϕ , (Yll−1m)θ = i

√
l+1
2l+1

(Yllm)ϕ , (A11)

which we use to get the tangential spherical components of the
functions Flmk and Hlmk in terms of the corresponding components
of Yllm.
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APPENDIX B. SPHERICAL BESSEL FUNCTIONS

We use the following definitions for the spherical Bessel functions

jl(z) = (2π)3/2il
Jl+1/2(z)√

z
,

nl(z) = (2π)3/2il
Nl+1/2(z)√

z
,

hl(z) = jl(z) + inl(z) = (2π)3/2il
Hl+1/2(z)√

z
,

(B1)

where Jl+1/2, Nl+1/2 and Hl+1/2 are (cylindrical) Bessel functions of
half-integer order and of the first, second and, respectively, third rank
(Hl+1/2 known also as the Hankel function) [23, 24]. We note the
“orthogonality” property∫

dz · zwν(αz)Wν(βz) =
z

β2 − α2
[βWν+1(βz)wν(αz)

−αWν(βz)wν+1(αz)] (B2)

for any pair wν ,Wν of (cylindrical) Bessel functions of the same rank.
We have also the useful integral
∫

dz · z2j2
l (αz) =

z3

2

[
j2
l (αz)−j2

l+1(αz)− 2l + 1
iαz

jl(αz)jl+1(αz)
]

(B3)

and a similar integral for hl(z).
The asymtotic behaviour of the spherical Bessel functions is given

by

jl(z) ∼z→0 4πil zl

(2l+1)!! , jl(z) ∼z→∞ 4πil sin(z−lπ/2)
z ,

nl(z) ∼z→0 −4πil (2l−1)!!
zl+1 , nl(z) ∼z→∞ −4πil cos(z−lπ/2)

z

(B4)

and

hl(z) ∼z→∞ −4πil+1 ei(z−lπ/2)

z
. (B5)

The following recurrence relations are used in the main text:

d

dz
jl(z) =

i

2l + 1
[ljl−1(z) + (l + 1)jl+1(z)] ,

jl(z) =
iz

2l + 1
[jl−1(z)− jl+1(z)]

(B6)



116 Apostol and Vaman

and

Jν(z)H
′
ν(z)− J

′
ν(z)Hν(z) =

2i

πz
,

Jν−1(z)Hν(z)− Jν(z)Hν−1(z) =
2

πiz
,

J
′
ν(z) = Jν−1(z)− ν

z
Jν(z) = −Jν+1(z) +

ν

z
Jν(z).

(B7)

APPENDIX C. PLANE WAVE

Beside the well-known decomposition

E0(r) = E0ex

∞∑

l=0

√
2l + 1

4π
jl(kr)Yl0(θ, ϕ) (C1)

for the plane wave E0 = E0exeikz, we have also the decomposition

E0(r) =
1

2
√

4π
E0

∞∑

l=1

{
√

2l + 1jl(kr)[Yll1(θ, ϕ) + Yll−1(θ, ϕ)]

+
√

l + 1jl−1(kr)[Yll−1−1(θ, ϕ)−Yll−11(θ, ϕ)]

+
√

ljl+1(kr)[Yll+1−1(θ, ϕ)−Yll+11(θ, ϕ)]} (C2)

as a series of vector spherical harmonics. It is very convenient to write
this equation in the more compact form

E0(r) = E0

∞∑

l=1m

(
almF0

lmk(r) + blmF+
lmk(r)

)
, (C3)

where

alm =
1
4

√
2l+1

π
(δm1+δm,−1) , blm =

1
4

√
2l+1

π
(−δm1 + δm,−1) (C4)

and the functions F0,+
lmk are given by Equation (18) in the main text.

The magnetic field is calculated from H0 = (−i/k)curlE0, and, making
use of Equation (A4), we get

H0 = iE0

∞∑

l=1m

[
almF+

lmk(r) + blmF0
lmk(r)

]
. (C5)
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