Vol. 97
Latest Volume
All Volumes
PIER 180 [2024] PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2009-10-16
High Frequency Scattering by an Impenetrable Sphere
By
Progress In Electromagnetics Research, Vol. 97, 291-325, 2009
Abstract
The high frequency scattering of a scalar plane wave from an impenetrable sphere with a diameter of several thousand wavelengths is treated by the Sommerfeld-Watson transformation, the saddle-point technique (SPT), and the numerical steepest descent method (NSDM). Both the near and far fields for the sphere are computed within the observation angle range of 0 to 180 degree. First, with the aid of the Watson transformation, the fast-convergent residue series replacing the slow-convergent Mie series is derived. Second, a new algorithm for finding the zeros of the Hankel functions is developed. Third, a novel NSDM, which is adaptive to frequency and is hence frequency independent, is proposed to overcome the breakdown of the traditional SPT in the transition region. Numerical results show that when the observation angle is very small, the Mie series solution of the near-field will not be accurate due to error accumulation. Furthermore, using the proposed methods, the CPU times for both the near-field and far-field calculations are frequency independent with controllable error. This work can be used to benchmark future works for high-frequency scattering.
Citation
Wei E. I. Sha, and Weng Cho Chew, "High Frequency Scattering by an Impenetrable Sphere," Progress In Electromagnetics Research, Vol. 97, 291-325, 2009.
doi:10.2528/PIER09100102
References

1. Mie, G., "Beitrage zur optik truber medien, speziell kolloidaler metallosungen," Annalen der Physik, Vol. 25, 377-445, 1908.
doi:10.1002/andp.19083300302

2. Kong, J. A., Electromagnetic Wave Theory, Wiley-Interscience, New York, 1990.

3. Watson, G. N., "The diffraction of electric waves by the earth," Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character, Vol. 95, 83-99, Oct. 1918.

4. Sommerfeld, A., Partial Differential Equations in Physics, Academic Press, New York, 1964.

5. Nussenzveig, H. M., "High-frequency scattering by an impenetrable sphere," Annals of Physics, Vol. 34, 23-95, 1965.
doi:10.1016/0003-4916(65)90041-2

6. Rumerman, M. L., "Application of the Sommerfeld-Watson transformation to scattering of acoustic-waves obliquely incident upon cylindrical-shells," Journal of the Acoustical Society of America, Vol. 91, 2502-2509, May 1992.
doi:10.1121/1.402986

7. Kim, H. T., "High-frequency analysis of EM scattering from a conducting sphere coated with a composite-material ," IEEE Transactions on Antennas and Propagation, Vol. 41, 1665-1674, Dec. 1993.
doi:10.1109/8.273310

8. Shim, J. and H. T. Kim, "An asymptotic solution of EM backscattering from a conducting sphere coated with a composite material," IEEE Transactions on Antennas and Propagation, Vol. 52, 1465-1472, Jun. 2004.
doi:10.1109/TAP.2004.830259

9. Paknys, R., "Evaluation of Hankel functions with complex argument and complex order," IEEE Transactions on Antennas and Propagation, Vol. 40, 569-578, May 1992.
doi:10.1109/8.142635

10. Pakny, R. and D. R. Jackson, "The relation between creeping waves, leaky waves, and surface waves," IEEE Transactions on Antennas and Propagation, Vol. 53, 898-907, Mar. 2005.
doi:10.1109/TAP.2004.842625

11. Li, M. K. and W. C. Chew, "A new Sommerfeld-Watson transformation in 3-D," IEEE Antennas and Wireless Propagation Letters, Vol. 3, 75-78, Dec. 2004.
doi:10.1109/LAWP.2004.834937

12. Valagiannopoulos, C. A., "An overview of the Watson transformation presented through a simple example," Progress In Electromagnetics Research, Vol. 75, 137-152, 2007.
doi:10.2528/PIER07052502

13. Sen, S. G. and M. Kuzuoglu, "Analysis of high frequency plane wave scattering from a double negative cylinder via the modi¯ed Watson transformation and Debye expansion," Progress In Electromagnetics Research, Vol. 84, 55-92, 2008.
doi:10.2528/PIER08061703

14. Langdon, S. and S. N. Chandler-Wilde, "A wavenumber independent boundary element method for an acoustic scattering problem," SIAM Journal on Numerical Analysis, Vol. 43, 2450-2477, 2006.
doi:10.1137/S0036142903431936

15. Bruno, O. P. and C. A. Geuzaine, "An O(1) integration scheme for three-dimensional surface scattering problems," Journal of Computational and Applied Mathematics, Vol. 204, No. 2, 463-476, Jul. 2007.
doi:10.1016/j.cam.2006.02.050

16. Davis, C. P. and W. C. Chew, "Frequency-independent scattering from a flat strip with TEz-polarized flelds," IEEE Transactions on Antennas and Propagation, Vol. 56, 1008-1016, Apr. 2008.
doi:10.1109/TAP.2008.919196

17. Delves, L. M. and J. N. Lyness, "A numerical method for locating the zeros of an analytic function," Mathematics of Computation, Vol. 21, 543-560, Oct. 1967.

18. Kravanja, P., T. Sakurai, and M. van Barel, "On locating clusters of zeros of analytic functions," Bit Numerical Mathematics, Vol. 39, 646-682, Dec. 1999.
doi:10.1023/A:1022387106878

19. Kravanja, P. and M. van Barel, "A derivative-free algorithm for computing zeros of analytic functions," Computing, Vol. 63, 69-91, 1999.
doi:10.1007/s006070050051

20. Kravanja, P., M. Van Barel, O. Ragos, M. N. Vrahatis, and F. A. Zafiropoulos, "ZEAL: A mathematical software package for computing zeros of analytic functions," Computer Physics Communications, Vol. 124, 212-232, Feb. 2000.
doi:10.1016/S0010-4655(99)00429-4

21. Protopopov, V. V., "Computing first order zeros of analytic functions with large values of derivatives," Numerical Methods and Programming, Vol. 8, 311-316, 2007.

22. Press, W. H., S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, Numerical Recipes: The Art of Scientific Computing, Cambridge University Press, 2007.

23. Huybrechs, D., Multiscale and hybrid methods for the solution of oscillatory integral equations , Ph.D. Dissertation, 2006.

24. Chew, W. C., "Waves and Fields in Inhomogenous Media," Van Nostrand Reinhold, New York, 1990.

25. Fock, V. A., "Diffraction of radio waves around the earth's surface," Journal of Physics-USSR, Vol. 9, 255-266, 1945.

26. Nussenzveig, H. M., "Uniform approximation in scattering by spheres," Journal of Physics A: Mathematical and General, Vol. 21, 81-109, Jan. 1988.
doi:10.1088/0305-4470/21/1/017

27. Abramowitz, M. and I. A. Stegun, Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, Dover Publications, Inc., New York, 1970.

28. Wiscombe, W. J., "Improved Mie scattering algorithms," Applied Optics, Vol. 19, 1505-1509, 1980.
doi:10.1364/AO.19.001505

29. Olver, F. W. J., "The asymptotic expansion of Bessel functions of large order," Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences, Vol. 247, 328-368, Dec. 1954.