Vol. 9
Latest Volume
All Volumes
PIERM 130 [2024] PIERM 129 [2024] PIERM 128 [2024] PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2009-11-17
Beampattern Synthesis with Linear Matrix Inequalities Using Minimal Array Sensors
By
Progress In Electromagnetics Research M, Vol. 9, 165-176, 2009
Abstract
A new beampattern synthesis formulation is proposed to compute the minimum number of array sensors required. In order to satisfy all the prescribed specifications of the beampattern, the proposed method imposes linear matrix inequality (LMI) constraints on the beampattern as developed by Davidson et al., which remove the need to discretize the beampattern region. As the proposed formulation is quasi-convex, an iterative procedure is used to decompose it into a systematic sequence of convex feasibility problems, in order to find the minimum number of sensors. The proposed method guarantees convergence if the globally optimal solution lies in the search interval, which is easily ensured at the start of the search.
Citation
Siew Eng Nai, Wee Ser, Zhu Liang Yu, and Susanto Rahardja, "Beampattern Synthesis with Linear Matrix Inequalities Using Minimal Array Sensors," Progress In Electromagnetics Research M, Vol. 9, 165-176, 2009.
doi:10.2528/PIERM09092804
References

1. Van Trees, H. L., Optimum Array Processing, Part IV of Detection, Estimation and Modulation Theory, John Wiley and Sons, 2002.

2. Qu, Y., G. S. Liao, S. Q. Zhu, and X. Y. Liu, "Pattern synthesis of planar antenna array via convex optimization for airborne forward looking radar," Progress In Electromagnetics Research, Vol. 84, 1-10, 2008.
doi:10.2528/PIER08060301

3. Mouhamadou, M., P. Vaudon, and M. Rammal, "Smart antenna array patterns synthesis: Null steering and multi-user beamforming by phase control," Progress In Electromagnetics Research, Vol. 60, 95-106, 2006.
doi:10.2528/PIER05112801

4. Guo, B., Y. Wang, J. Li, P. Stoica, and R. Wu, "Microwave imaging via adaptive beamforming methods for breast cancer detection," PIERS Online, Vol. 1, No. 3, 350-353, 2005.

5. Davidson, T. N., Z. Q. Luo, and J. F. Sturm, "Linear matrix inequality formulation of spectral mask constraints with applications to FIR filter design ," IEEE Trans. Signal Process., Vol. 50, 2702-2715, Nov. 2002.

6. Davidson, T. N., Z. Q. Luo, and K. M. Wong, "Design of orthogonal pulse shapes for communications via semidefinite programming," IEEE Trans. Signal Process., Vol. 48, 1433-1445, May 2000.
doi:10.1109/78.839988

7. Woodward, P. M. and J. D. Lawson, "The theoretical precision with which an arbitrary radiation pattern may be obtained from a source of finite size," J. IEE, Vol. 95, 363-370, Sep. 1948.

8. Wu, S.-P., S. P. Boyd, and L. Vandenberghe, "FIR filter design via spectral factorization and convex optimization," Appl. Computational Contr., Signal and Commun., Vol. 1, 215-245, B. N. Datta, Birkhauser, Boston, MA, 1997.

9. Nai, S. E., W. Ser, Z. L. Yu, and S. Rahardja, "A robust adaptive beamforming framework with beampattern shaping constraints," IEEE Trans. Antennas Propag., Vol. 57, 2198-2203, Jul. 2009.

10. Hoang, H. G., H. D. Tuan, and B.-N. Vo, "Low-dimensional SDP formulation for large antenna array synthesis," IEEE Trans. Antennas Propag., Vol. 55, 1716-1725, Jun. 2007.
doi:10.1109/TAP.2007.898573

11. Sturm, J. F., "Using SeDuMi 1.02, a MATLAB toolbox for optimization over symmetric cones," Optimization Methods Softw., Vol. 11-12, 625-653, 1999.
doi:10.1080/10556789908805766

12. Yu, Z. L., W. Ser, and M. H. Er, "Robust adaptive beamformers with linear matrix inequality constraints," Proc. IEEE Int. Symp. Circuits Syst. (ISCAS'08), 3214-3217, Seattle, WA, May 2008.

13. Roh, T. and L. Vandenberghe, "Discrete transforms, semidefinite programming, and sum-of-squares representations of nonnegative polynomials," Soc. Ind. Appl. Math. (SIAM) J. Optimization, Vol. 16, 939-364, 2006.

14. Dumitrescu, B., Positive Trigonometric Polynomials and Signal Processing Applications, Springer, 2007.

15. Boyd, S. P. and L. Vandenberghe, Convex Optimization, Cambridge Univ. Press, United Kingdom, 2004.