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Abstract—A new beampattern synthesis formulation is proposed to
compute the minimum number of array sensors required. In order
to satisfy all the prescribed specifications of the beampattern, the
proposed method imposes linear matrix inequality (LMI) constraints
on the beampattern as developed by Davidson et al., which remove
the need to discretize the beampattern region. As the proposed
formulation is quasi-convex, an iterative procedure is used to
decompose it into a systematic sequence of convex feasibility problems,
in order to find the minimum number of sensors. The proposed method
guarantees convergence if the globally optimum solution lies in the
search interval, which is easy to ensure at the start of the search.
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1. INTRODUCTION

Sensor arrays are used ubiquitously in radar, sonar, cellular systems,
and more recently, medical imaging [1–4]. One fundamental array
processing task is beampattern synthesis, which designs complex
weights for the array sensors to achieve a high directive gain or to
spatially filter impinging signals by their directions-of-arrival. The
aims for developing a beampattern synthesis method to determine
the minimum number of array sensors required are twofold from an
implementation point of view. First, the physical dimension of the
array is normally constrained by its supporting structure, for example,
a radio tower, the fuselage of an aeroplane or a towed array. Second,
the cost per sensor can be significant in many applications due to
the sensor itself and the associated electronics [1]. Hence, we modify
the method of Davidson et al. in [5] and propose a new formulation
that can find the minimum number of array sensors required to
achieve prescribed beampattern specifications and the corresponding
beamforming weights, systematically. A related problem arises in
minimum order filter design [6].

Classical beampattern synthesis methods such as that of
Woodward and Lawson [7] are capable of synthesizing an arbitrary
beampattern. However, the ripples between the sample points
are uncontrollable and may possibly violate the beampattern
requirements [1]. In contrast, the use of the LMI constraint in
the proposed method represents the semi-infinite magnitude response
constraint on the beampattern in a finite and convex manner. Due to
this finite and precise representation of the semi-infinite constraint,
there is no need to discretize the beampattern region, which are
typically required by the methods of [7–9] so as to approximate the
semi-infinite constraint. As such, the synthesized beampattern by
the proposed method conforms to the prescribed specifications of
an arbitrary beampattern strictly, unlike [7]. An alternative LMI
representation of the beampattern constraints is developed in [10].

The proposed formulation is quasi-convex which means that it can
have stationary points that are suboptimum solutions, thus an iterative
procedure is used to decompose the formulation into a systematic
sequence of convex feasibility problems. At each step, a feasibility
problem is solved efficiently via the interior-point method (IPM) solver
such as [11], which determines if a set of beamforming weights exists,
for a particular number of array sensors. As such, the proposed method
is guaranteed to find the minimum number of sensors to achieve the
prescribed beampattern specifications so long as this solution is located
in the search interval. This is easy to ensure at the start of the search.
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2. DATA MODEL

Consider a uniform linear array (ULA) of N +1 isotropic sensors with
d inter-element spacing. A plane wave of λ wavelength impinges on
it at θ degrees from the array axis. The array beampattern can be
expressed as G(θ) =

∑N
k=0 wke

j 2π
λ

kd cos θ with complex array weights
wi for i = 0, . . . , N . A typical beampattern design constraint can
be expressed as L(θ) ≤ |G(θ)| ≤ U(θ) where θ ∈ [0, π), | · | refers
to absolute operator, L(θ) and U(θ) denote the lower and upper
magnitude response limits, respectively. The lower bound of this
constraint is non-convex thus, it is necessary to convert it into a convex
constraint by a transformation of variables [5, 8, 10].

The autocorrelation sequence of the complex weights wi is defined
as rw(k) =

∑N
i=−N wiw

∗
i+k where k = −N, . . . , 0, . . . , N , (·)∗ represents

the complex conjugate operator and wi = 0 for i < 0 and i > N [8].
The Fourier Transform of rw(k) is

Rw(θ) =
N∑

k=−N

rw(k)ejk 2π
λ

d cos θ (1)

and it is shown in [8] that

Rw(θ) = aT (θ)rw = |G(θ)|2, (2)

where a(θ) = [e−jN 2π
λ

d cos θ . . . 1 . . . ejN 2π
λ

d cos θ]T , rw =
[rw(−N) . . . rw(0) . . . rw(N)]T and (·)T refers to the transpose
operator. Thus, the original non-convex constraint is equivalent to

L2(θ) ≤ aT (θ)rw ≤ U2(θ), θ ∈ [0, π) (3)

which is convex. As there are two linear inequalities in rw for every
θ ∈ [0, π), (3) is a semi-infinite constraint.

3. THE PROPOSED METHOD

We aim to find the minimum number of array sensors N + 1 and
the corresponding weights wi for beampattern design. For notational
convenience, let M = N +1. The semi-infinite constraint (3) is used to
specify beampattern requirements explicitly on the mainlobe (ΘML),
sidelobe (ΘSL) and null (ΘN) regions, respectively via (4b)–(4c). The
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proposed problem is formulated as
min
M,rw

M (4a)

s.t. L2(θ) ≤ aT (θ)rw ≤ U2(θ), θ ∈ ΘML (4b)
aT (θ)rw ≤ U2(θ), θ ∈ ΘSL ∪ΘN (4c)

aT (θ)rw ≥ 0, θ ∈ Θ (4d)
rw(−k) = r∗w(k), k = 0, . . . , M − 1 (4e)

M ∈ Z+, (4f)
where the abbreviation s.t. stands for “subject to”, Z+ denotes the
set of positive integers and Θ(·) represents the set of θ in a particular
angular region designated by the subscript. The optimization variable
in (4) is the array weight autocorrelation sequence rw. The constraint
(4c) requires that the response in ΘSL (or ΘN) is at most U2(θ). The
constraint (4d) is sufficient to ensure that the complex weights wi can
be extracted (though not uniquely) from the obtained rw by spectral
factorization [8]. Here, minimum phase spectral factor is used†.

4. REFORMULATION OF THE PROPOSED METHOD
VIA LMI CONSTRAINTS

It is a common practice to approximate the semi-infinite constraints
(4b)–(4d) by discretizing θ, like in [8, 9]. This does not affect the
convexity of the resulting constraints. Though the discretization grid
can be made very fine, unfortunately the discretized version of problem
(4) can have numerical difficulties and still, the resulting constraints are
approximations of (4b)–(4d) at best. To avoid these drawbacks, (4b)–
(4d) are expressed as LMI constraints by rewriting the beampattern
expression in (3) as

aT (θ)rw = <{
s̃H(Ω)r̃w

}
(5)

where s̃(Ω) = [1 ejΩ . . . ejNΩ]T , Ω = 2π
λ d cos θ, r̃w =

[rw(0) 2rw(1) . . . 2rw(N)]T , (·)H defines Hermitian transpose operator
and <{·} denotes a real operator [12]. With (5), the constraints (4b)–
(4d) can be written as (6a)–(6c) according to the specific beampattern
region:

<{
s̃H(Ω)(−r̃w + U2(Ω)e1)

} ≥ 0, Ω ∈ ΩML ∪ΩSL ∪ΩN (6a)

<{
s̃H(Ω)(r̃w − L2(Ω)e1)

} ≥ 0, Ω ∈ ΩML (6b)

<{
s̃H(Ω)r̃w

} ≥ 0, ∀Ω (6c)
† Many choices exist for the spectral factor and the minimum phase spectral factor may
not always be the most appropriate choice.
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where Ω(·) denotes the set of Ω in an angular region defined by the
subscript and the unit vector e1 is the first column of a M × M
identity matrix. Note the change in the argument of L2(·) and U2(·).
Next, Lemma 1 is applied to transform the constraints in (6) into their
equivalent LMI forms‡.
Lemma 1 With a p ∈ R × CM where R and CM denote the sets
of real numbers and complex M × 1 vectors, respectively and that
0 ≤ Ωl < Ωu < 2π, the following sets

K(Ωl, Ωu) =
{
p|<{s̃H(Ω)p} ≥ 0, Ω ∈ [Ωl, Ωu]

}
(7a)

K̄(Ωl, Ωu) =
{
p|<{s̃H(Ω)p} ≥ 0, Ω ∈ [0, 2π)\(Ωl, Ωu)

}
(7b)

K(0, 2π) =
{
p|<{s̃H(Ω)p} ≥ 0, Ω ∈ [0, 2π)

}
(7c)

describe trigonometric polynomials that are non-negative over a
segment of the unit circle [Ωl,Ωu], the complement of that segment
[0, 2π)\(Ωl,Ωu) and on the unit circle [0, 2π), respectively. By a
generalized Positive Real Lemma [5], (7a)–(7c) can be converted into
equivalent LMI forms as

K(Ωl, Ωu) = {p|p + jξe1 = L̄(X) + Λ̄(Z; Ωl, Ωu),∃X,Z º 0}, (8a)
K̄(Ωl, Ωu) = {p|p + jξe1 = L̄(X)− Λ̄(Z; Ωl, Ωu),∃X,Z º 0}, (8b)
K(0, 2π) = {p|p = L̄(X),∃X º 0}, (8c)

respectively where ξ is an arbitrary real scalar and X,Z º 0 denotes
positive semi-definite Hermitian matrices. L̄(·) and Λ̄(·) are linear
operators where their definitions have been deferred to the Appendix.

Applying Lemma 1 to our beamforming problem of interest, the
proposed formulation (4) is transformed into

min
M,r̃w

M (9)

s.t. −r̃w + U2(Ω)e1 + jξ1e1 = L̄(X1)− Λ̄(Z1; Ωml, Ωmu),Ω ∈ ΩML

r̃w − L2(Ω)e1 + jξ2e1 = L̄(X2)− Λ̄(Z2; Ωml,Ωmu), Ω ∈ ΩML

−r̃w + U2(Ω)e1 + jξ3e1 = L̄(X3) + Λ̄(Z3; Ωsl, Ωsu),Ω ∈ ΩSL

−r̃w + U2(Ω)e1 + jξ4e1 = L̄(X4) + Λ̄(Z4; Ωnl, Ωnu), Ω ∈ ΩN

r̃w = L̄(X5), ∀Ω
M ∈ Z+, ∀X º 0, ∀Z º 0

where Ωml and Ωmu define the lower and upper boundaries of ΩML,
respectively. This notational convention applies to ΩSL and ΩN as
well. The mainlobe constraints in (9) obtain a broad mainlobe and
assume it is centred at 90◦ hence (8b) is used. Since ΩSL and ΩN

‡ For related development on trigonometric polynomials, please refer to [10, 13, 14].
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fall outside this region, then (8a) is used. The sets of X, Z and ξ with
different subscripts are used to differentiate the constraints in (9). The
optimization variable here is r̃w and not rw as in (4), so the constraint
(4e) can be omitted from (9). After (9) is solved, the solution r̃w is
rearranged to obtain rw according to (4e) and (5), after which spectral
factorization is applied on rw to derive the beamforming weights wi.

If beampattern requirements specify a mainlobe with unity gain
in a desired direction θ0 (or Ω0), then the mainlobe constraints in (9)
are not applicable. They should be replaced by <{s̃H(Ω0)r̃w} = 1 as

min
M,r̃w

M (10)

s.t. <{s̃H(Ω0)r̃w} = 1,

−r̃w + U2(Ω)e1 + jξ1e1 = L̄(X1) + Λ̄(Z1; Ωsl, Ωsu), Ω ∈ ΩSL

−r̃w + U2(Ω)e1 + jξ2e1 = L̄(X2) + Λ̄(Z2; Ωnl,Ωnu),Ω ∈ ΩN

r̃w = L̄(X3), ∀Ω
M ∈ Z+, ∀X º 0, ∀Z º 0.

Different from (4), the proposed formulations (9) and (10) impose
finite LMI constraints on the beampattern. However, (4), (9) and
(10) are all quasi-convex optimization problems consisting of convex
constraints and a quasi-convex objective function. The discontinuous
objective function f(M) = M is quasi-convex since the modified
Jensen’s inequality is proven to hold:

f(αm1 + (1− α)m2) ≤ max{f(m1), f(m2)}, (11)
αm1 + (1− α)m2 ≤ max{m1,m2}, (12)

α(m1 −m2) + m2 ≤ m2, (13)

where 0 ≤ α ≤ 1, max{·, ·} is an operator that gives the maximum
value of its arguments, m1 and m2 are elements in the domain of the
objective function. The last two inequalities hold with m1 < m2.

5. IMPLEMENTATION OF THE PROPOSED METHOD

The sub-level sets of quasi-convex optimization problems are
convex [15], thus the globally optimum solutions of the proposed
formulations (4), (9) and (10) can be found by decomposing them into
a sequence of convex feasibility problems. We use (10) as an example.
Suppose Mopt is the globally optimum solution of (10). Consider the
decomposition of (10) into (14) with the same constraints but at Mc
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number of sensors.

Find r̃w (14)
s.t. <{

s̃H(Ω0)r̃w

}
= 1,

−r̃w + U2(Ω)e1 + jξ1e1 = L̄(X1) + Λ̄(Z1; Ωsl, Ωsu), Ω ∈ ΩSL

−r̃w + U2(Ω)e1 + jξ2e1 = L̄(X2) + Λ̄(Z2; Ωnl, Ωnu),Ω ∈ ΩN

r̃w = L̄(X3),∀Ω
∀X º 0, ∀Z º 0.

The problem (14) is convex which can be solved via a IPM solver to
determine if the constraints are feasible at Mc number of sensors. If so,
there exists a non-empty feasible set and it finds a solution point r̃w

in the set, implying that Mopt ≤ Mc. Feasible beamforming weights
wi can be found after spectral factorization is performed on rw (by
transforming r̃w). Otherwise, the feasible set is empty and the solver
issues a certificate of infeasibility implying that Mopt > Mc.

As such, the proposed formulations can be solved by an iterative
procedure known as bisection search. It starts with a search interval
[Ml, Mu] assumed to contain Mopt where Ml < Mu. The feasibility
problem (14) is solved at Mc = (Ml+Mu)

2 , to determine if Mopt resides
in the lower or upper half of the interval, after which the search interval
is updated accordingly. This produces a new interval containing Mopt

at half of the previous interval width. The above steps are repeated
until the stop criterion is reached where the search interval converges
to a globally optimum Mopt value, i.e., Mu −Ml < 1.

6. CONVERGENCE OF THE PROPOSED METHOD

In the previous section, it is assumed that Mopt exists in the search
interval [Ml,Mu]. This insinuates that the problem (14) has to be
feasible at Mu sensors. Otherwise, Mopt is not located in [Ml,Mu] and
(14) will be infeasible at all the tested values in [Ml,Mu].

To prevent the proposed method from searching through [Ml,Mu]
which does not contain Mopt, a simple suggestion is to check the
feasibility of (14) at Mu number of sensors at the start of the search.
If (14) is infeasible at Mu sensors, this infeasible Mu value is assigned
to Ml and Mu is re-assigned with M ′

u (Mu < M ′
u) so that the new

search interval [Ml,Mu] does not widen unnecessarily. Given the
nature of bisection search, an appropriate choice of M ′

u can be twice
the value of Mu. This is done until the feasibility check is passed at
Mu number of sensors. In so doing, the proposed method ensures
that it is searching through an interval which contains Mopt and
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thereby guarantees convergence. The implementation procedure of the
proposed method is summarized here.

(i) Choose a search interval [Ml,Mu]. Ml can be set to 1.
(ii) Check the feasibility of Equation (14) at Mu number of sensors.

If it is feasible, proceed to step (iii). Otherwise, update Ml with
the value of Mu. Update Mu with M ′

u whose value is greater than
Mu. Repeat step (ii). This ensures that the proposed method is
searching through [Ml,Mu] where Ml < Mopt ≤ Mu and that the
search interval does not widen unnecessarily.

(iii) Let Mc = dMl+Mu

2 e. Since the number of sensors has to be an
integer, a d·e operator is used to round up (Ml+Mu

2 ), which can be
a non-integer.

(iv) Check the feasibility of Equation (14) at Mc number of sensors.
(v) If Equation (14) is reported feasible, update Mu with the value of

Mc. Otherwise, update Ml with the value of Mc.
(vi) Repeat steps (iii)–(v) until the stop criterion (Mu − Ml < 1) is

reached.

Suppose the proposed method begins with [Ml,Mu] known in
advance to contain Mopt, then the number of iterations before it stops
is dlog2(Mu −Ml)e [15].

7. SIMULATION RESULTS

The proposed formulations (9) and (10) are applied to find the
minimum number of sensors needed for two different beampattern
designs (specifications are shown in dotted lines) and their
corresponding beamforming weights. A ULA of M isotropic sensors
with a 0.5λ spacing is used. The search interval is set to [Ml,Mu] =
[1, 32] where both designs are tested feasible at 32 sensors. The
beampatterns for both designs using Mu = 32 sensors by the method
of [5] are shown.

First, a beampattern with a broad mainlobe and suppressed
sidelobes is desired. The sidelobe region is [0◦, 69.4◦] ∪ [110.6◦, 180◦]
to be suppressed by −25 dB. The mainlobe width is set to 22◦ and its
response ripple is to be within 0.48 dB. The proposed formulation (9)
(without null constraint) is used to achieve the beampattern in Fig. 1
and the minimum number of sensors required is Mopt = 14.

Next, a beampattern with a narrow mainlobe, controlled sidelobes
and nulls is desired, so the proposed formulation (10) is used. The
sidelobe region is [0◦, 79.55◦] ∪ [100.45◦, 180◦] to be suppressed by
−40 dB. The null regions are [50◦, 60◦]∪[120◦, 130◦] with an attenuation
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Figure 1. Beampatterns obtained by the method of [5] with 32 sensors
and proposed method with 14 sensors. The beampattern has to be
lower than outer dotted lines and higher than inner dotted lines.
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Figure 2. Beampatterns obtained by the method of [5] with 32 sensors
and proposed method with 20 sensors. The beampattern has to be
lower than the dotted lines.

level of −55 dB. The resulting beampattern is shown in Fig. 2 and
Mopt = 20.

Given the same prior information that the optimum solution Mopt

lies in [Ml,Mu] = [1, 32] as in the examples, the direct application
of the method of [5] to find the minimum number of sensors for
beampattern designs would involve either increasing the number of
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sensors one by one from Ml = 1 or reducing the number of sensors
one by one from Mu = 32. However, this results in a large number
of iterations (20 and 14 iterations for the first and second designs,
respectively for the latter case). Both ways are not efficient and the
number of iterations required before stopping is unknown. In contrast,
the advantages of the proposed method are that the minimum number
of array sensors for beampattern designs is computed in a systematic
way via bisection and the number of iterations before it stops, is known.
For the proposed method, only 5 iterations are required in both cases.

Note that in the case of applying the method of [5] using more
array sensors than required, the extra degrees of freedom are well-
utilized as the generated beampatterns in Figs. 1–2 have exceeded
the beampattern specifications. Such a performance is due to the
properties of the IPM.

8. CONCLUSION

A beampattern synthesis formulation has been proposed to find the
minimum number of array sensors needed and the corresponding
beamforming weights, systematically. The proposed method employs
LMI constraints on the beampattern so that the prescribed
specifications are satisfied precisely. An iterative procedure is used to
decompose the proposed quasi-convex formulation into a systematic
sequence of convex feasibility problems. The proposed method is
guaranteed to find the minimum number of array sensors so long as
this solution lies in the search interval, which can be easily ensured at
the start of the search. The effectiveness of the proposed method is
shown with two design examples via computer simulations.
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APPENDIX A.

To allow a concise LMI description of the cones in (7), a Toeplitz
matrix Tk,N is defined as

[Tk,N ]i,j =
{

1, if i = j + k
0, otherwise

for i, j ∈ [0, 1, . . . , N ]. The notation 〈Tk,N ,X〉 =
∑N−k

l=0 Xl+k,l means
the sum of the elements on the kth lower off-diagonal of X. The
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adjoint operator L̄(·) is expressed as y = L̄(X) with y0 = 〈T0,N ,X〉,
yk = 2〈Tk,N ,X〉, for k = 1, . . . , N .

With 0 ≤ Ωl < Ωu < 2π, the vector d(Ωl, Ωu) is defined as:

d(Ωl, Ωu) =





[
cos (Ωl) + cos (Ωu)− cos (∆Ω)− 1(

1− ejΩl
) (

ejΩu − 1
)

]
, if Ωl > 0

[ − sin(Ωu)
j(1− ejΩu)

]
, if Ωl = 0

where ∆Ω = Ωu − Ωl.
With d(Ωl, Ωu), the adjoint operator Λ̄(·) is expressed by y =

Λ̄(X):

y0 = d0(Ωl,Ωu)〈T0,N−1,X〉+ d∗1(Ωl, Ωu)〈T1,N−1,X〉,
yk = 2d0(Ωl, Ωu)〈Tk,N−1,X〉+ d1(Ωl, Ωu)〈Tk−1,N−1,X〉

+d∗1(Ωl, Ωu)〈Tk+1,N−1,X〉, k = 1, . . . , N − 2,

yN−1 = 2d0(Ωl, Ωu)〈TN−1,N−1,X〉+ d1(Ωl,Ωu)〈TN−2,N−1,X〉,
yN = d1(Ωl,Ωu)〈TN−1,N−1,X〉. (A1)
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