Vol. 98
Latest Volume
All Volumes
PIER 180 [2024] PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2009-10-27
The Analytical Design of a Folded Waveguide Traveling Wave Tube and Small Signal Gain Analysis Using Madey's Theorem
By
Progress In Electromagnetics Research, Vol. 98, 137-162, 2009
Abstract
We are developing an analytical model for the design of the folded waveguide traveling wave tube (FWTWT). This analytical model provides the physical view for rapid design optimization of the FWTWT. The design and analysis of the FWTWT using the spatial harmonics method of the TE10 mode of the EM wave are presented. An X-band FWTWT is used to verify this method. The normalized dispersion and beam line equations are used to simplify the design process so that the FWTWT can be designed to operate at any desired frequency. The small signal gain of an FWTWT is calculated by using Madey's theorem. The results of this analysis are compared with the numerical single particle simulation carried out using MATLAB. The results are in excellent agreement. The Madey's theorem can be used to provide a potential indication of the gain magnitude of the FWTWT.
Citation
Mohd Fareq Bin Abd Malek, "The Analytical Design of a Folded Waveguide Traveling Wave Tube and Small Signal Gain Analysis Using Madey's Theorem," Progress In Electromagnetics Research, Vol. 98, 137-162, 2009.
doi:10.2528/PIER09092604
References

1. Hutter, R. G. E. and S. W. Harrison, Beam Wave Electronics in Microwave Tubes, Princeton University Press, 1960.

2. Dohler, G., D. Gallagher, and J. Richards, "Millimeter wave folded waveguide TWTs," Vacuum. Electron. Ann. Rev. Proc., 15-20, 1993.

3. Bhattacharjee, S., J. H. Booske, C. L. Kory, D. W. Van DerWeide, S. Limbach, J. D. Welter, M. R. Lopez, R. M. Gilgenbach, R. L. Ives, M. E. Read, R. Divan, and D. C. Mancini, "Folded waveguide traveling-wave tube sources for terahertz radiation," IEEE Transactions on Plasma Science, Vol. 32, No. 3, 1002-1014, June 2004.
doi:10.1109/TPS.2004.828886

4. Stuart, R. A., A. I. Al-Shamma'a, and J. Lucas, "Compact tuneable terahertz source," 2nd EMRS DTC Technical Conference-Edinburgh, 2005.

5. Singh, G., "Analytical study of the interaction structure of vane-loaded gyro-traveling wave tube amplifier," Progress In Electromagnetics Research B, Vol. 4, 41-66, 2008.
doi:10.2528/PIERB08010402

6. Booske, J. H., M. C. Converse, C. L. Kory, C. T. Chevalier, D. A. Gallagher, K. E. Kreischer, V. O. Heinen, and S. Bhattacharjee, "Accurate parametric modeling of folded waveguide circuits for millimeter-wave traveling wave tubes," IEEE Transactions on Electron Devices, Vol. 52, No. 5, 685-694, May 2005.
doi:10.1109/TED.2005.845798

7. Han, S.-T., J.-I. Kim, and G.-S. Park, "Design of a folded waveguide traveling-wave tube," Microwave and Optical Technology Letters, Vol. 38, No. 2, 161-165, July 20, 2003.
doi:10.1002/mop.11003

8. Yang, T., S. Song, H. Dong, and R. Ba, "Waveguide structures for generation of terahertz radiation by electro-optical process in GaAs and ZnGeP2 using 1.55 μm fiber laser pulses," Progress In Electromagnetics Research Letters, Vol. 2, 95-102, 2008.
doi:10.2528/PIERL07122806

9. Wang, W., Y. Wei, G. Yu, Y. Gong, M. Huang, and G. Zhao, "Review of the novel slow-wave structures for high-power traveling-wave tube," International Journal of Infrared and Millimeter Waves, Vol. 24, No. 9, 1469-1484, September 2003.
doi:10.1023/A:1025535808995

10. Kory, C. L., J. H. Booske, W.-J. Lee, S. Gallagher, D. W. Van Der Weide, S. Limbach, and S. Bhattacharjee, "THz radiation using high power, microfabricated, wideband TWTs," International Microwave Symposium Digest 2, IEEE MTT-S International, 1265-1268, 2002.

11. Bhattacharjee, S., J. H. Booske, C. L. Kory, D. W. Van DerWeide, S. Limbach, M. Lopez, R. M. Gilgenbach, and M. Genack, "THz radiation using compact folded waveguide TWT oscillators," International Microwave Symposium Digest 2, IEEE MTT-S International, 1331-1334, 2003.

12. Park, G.-S., H.-J. Ha, W.-K. Han, S.-S. Jung, C.-W. Baik, and A. Ganguly, "Investigation of folded waveguide TWT," 25th International Conference on Infrared and Millimeter Waves, 279-280, 2000.

13. Glover, L. K. and R. H. Pantell, "Simplified analysis of free-electron lasers using Madey's theorem," IEEE Journal of Quantum Electronics, Vol. 21, No. 7, July 1985.

14. Qin, P.-Y., C.-H. Liang, and B. Wu, "Novel dual-mode bandpass filter with transmission zeros using substrate integrated waveguide cavity," Journal of Electromagnetic Waves and Applications, Vol. 22, No. 5--6, 723-730, 2008.
doi:10.1163/156939308784159417

15. Gittins, J. F., Power Travelling-wave Tubes, The English Universities Press Ltd., 1964.

16. Pierce, J. R., Traveling-wave Tubes, D. Van Nostrand Company, Inc., 1950.

17. Liu, S., "Study of propagating characteristics for folded waveguide TWT in millimeter wave," International Journal of Infrared and Millimeter Waves, Vol. 21, No. 4, 655-660, 2000.
doi:10.1023/A:1006696106798

18. Harvey, A. F., "Periodic and guiding structures at microwave frequencies," IRE Trans. Microwave Theory Techn., Vol. 8, 30-61, 1960.
doi:10.1109/TMTT.1960.1124658

19. Collin, R. E., Foundations for Microwave Engineering, McGraw-Hill, 1992.

20. Reutskiy, S. Y., "The methods of external excitation for analysis of arbitrarily-shaped hollow conducting waveguides," Progress In Electromagnetics Research, Vol. 82, 203-226, 2008.
doi:10.2528/PIER08022701

21. Psarros, I. and I. D. Chremmos, "Resonance splitting in two to traveling-wave optical resonators," Progress In Electromagnetics Research, PIER 87, 197-214, 2008.

22. Hernandez-Lopez, M. A. and M. Quintillan-Gonzalez, "A finite element method code to analyse waveguide dispersion," Journal of Electromagnetic Waves and Applications, Vol. 21, No. 3, 397-408, 2007.
doi:10.1163/156939307779367396

23. Sjoberg, D., "Determination of propagation constants and material data from waveguide measurements," Progress In Electromagnetics Research B, Vol. 12, 163-182, 2009.
doi:10.2528/PIERB08121304

24. Heh, D. Y. and E. L. Tan, "Dispersion analysis of FDTD schemes for doubly lossy media," Progress In Electromagnetics Research B, Vol. 17, 327-342, 2009.
doi:10.2528/PIERB09082802

25. Kalyanasundaram, N. and G. N. Babu, "Dispersion of electromag netic waves guided by an open tape Helix I," Progress In Electromagnetics Research B, Vol. 16, 311-331, 2009.
doi:10.2528/PIERB09052608

26. Stuart, R. A., "The design of folded waveguide travelling wave tubes,", A report for FELDEC, October 16, 2004.

27. Nie, Z. P., S. Yan, S. He, and J. Hu, "On the basis functions with traveling wave phase factor for efficient analysis of scattering from electrically large targets," Progress In Electromagnetics Research, PIER 85, 83-114, 2008.

28. Su, D. Y., D. M. Fu, and Z. H. Chen, "Numerical modeling of active devices characterized by measured S-parameters in FDTD," Progress In Electromagnetics Research, PIER 80, 381-392, 2008.

29. Vaish, A. and H. Parthasarathy, "Analysis of a rectangular waveguide using finite element method," Progress In Electromagnetics Research C, Vol. 2, 117-125, 2008.
doi:10.2528/PIERC08031801

30. Shahi, A. K., V. Singh, and S. P. Ojha, "Dispersion characteristics of electromagnetic waves in circularly cored highly birefringent waveguide having elliptical cladding," Progress In Electromagnetics Research, PIER 75, 51-62, 2007.

31. Mondal, M. and A. Chakrabarty, "Resonant length calculation and radiation pattern synthesis of longitudinal slot antenna in rectangular waveguide," Progress In Electromagnetics Research Letters, Vol. 3, 187-195, 2008.
doi:10.2528/PIERL08042204

32. Marcuvitz, N., Waveguide Handbook, Peregrinus, Stevenage, 1986.

33. Che, W., C. Li, D. Wang, L. Xu, and Y. Chow, "Investigation on the ohmic conductor losses in substrate-integrated waveguide and equivalent rectangular waveguide," Journal of Electromagnetic Waves and Applications, Vol. 21, No. 6, 769-780, 2007.
doi:10.1163/156939307780749101

34. Eichmeier, J. A. and M. Thumm, Vacuum Electronics: Components and Devices, Springer, 2008.

35. Carle, P. L., "New accurate and simple equivalent circuit for circular E-plane bends in rectangular waveguide," Electronics Letters, Vol. 23, No. 10, 531-532, May 7, 1987.
doi:10.1049/el:19870383

36. Panda, D. K. K., A. Chakrabarty, and S. R. Choudhury, "Analysis of Co-channel interference at waveguide joints using multiple cavity modeling technique," Progress In Electromagnetics Research Letters, Vol. 4, 91-98, 2008.
doi:10.2528/PIERL08042704

37. Sumathy, M., K. J. Vinoy, and S. K. Datta, "Equivalent circuit analysis of serpentine foldedwaveguide slow-wave structures for millimeter-wave travelingwave tubes," International Journal of Infrared and Millimeter Waves, Vol. 30, No. 2, 151-158, February 2009.

38. Stuart, R. A., "The gain of a FWTWT,", A report for FELDEC, November 12, 2004.

39. Pozar, D. M., Microwave Engineering, John Wiley & Sons, Inc., 1998.

40. Kumar, D., P. K. Choudhury, and O. N. Singh, "Towards the dispersion relations for dielectric optical fibers with helical windings under slow- and fast-wave considerations --- A comparative analysis," Progress In Electromagnetics Research, PIER 80, 409-420, 2008.