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Abstract—We are developing an analytical model for the design of
the folded waveguide traveling wave tube (FWTWT). This analytical
model provides the physical view for rapid design optimization of the
FWTWT. The design and analysis of the FWTWT using the spatial
harmonics method of the TE10 mode of the EM wave are presented.
An X-band FWTWT is used to verify this method. The normalized
dispersion and beam line equations are used to simplify the design
process so that the FWTWT can be designed to operate at any desired
frequency. The small signal gain of an FWTWT is calculated by using
Madey’s theorem. The results of this analysis are compared with the
numerical single particle simulation carried out using MATLAB. The
results are in excellent agreement. The Madey’s theorem can be used to
provide a potential indication of the gain magnitude of the FWTWT.

1. INTRODUCTION

The first analysis of the folded waveguide traveling wave tube
(FWTWT) was performed by Hutter in 1960. Dohler et al also
did some work on an FWTWT at 45 GHz in the early 1990s [1, 2].
The FWTWT is an excellent candidate for many applications such
as in communications, radar, military and medical fields, especially
at millimeter-wave or terahertz frequencies [3–8]. The characteristics
of the folded waveguide traveling wave tube fall under the umbrella
of the general traveling wave tube (TWT) [9]. However, the present
interest in the FWTWT is due to the work of Bhattacharjee, who has
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shown that it is possible to combine vacuum electronics technology
and silicon fabrication techniques to build miniature FWTWT, having
sufficiently small broad and narrow dimensions that operation at very
high frequencies would be possible [10, 11]. When acting as sources,
FWTWTs are predicted to be capable of producing milliwatts of
output at terahertz frequencies with a low voltage (around 10 kV) and
a low current (about 1 mA). Park and his co-workers have also been
building low frequency prototype FWTWTs [12].

In this paper, we are developing an analytical model for the
design of the folded waveguide travelling wave tube (FWTWT).
Bhattacharjee has performed the simulation for the gain of FWTWT
using state of the art TWT softwares [3]. However, the softwares do
not provide the physical view for the rapid design optimization of the
FWTWT. Han has performed the analytical study of the FWTWT,
using the spatial harmonic method, but he did not provide a method
to provide the optimum interaction between the electron beam and the
EM wave dispersion curve [7]. In our approach, we firstly performed
the spatial harmonic analysis to determine the beam-wave interaction
for the FWTWT. In order to optimize the beam-wave interaction,
the normalization method is used, so that all FWTWT designs would
have identical beam-wave interaction dispersion curve plot. Different
designs will only differ in the value of relative electron velocity, if the
accelerating voltage of the beam is specified.

In the next step, the gain analysis of the FWTWT would
be performed using Madey’s theorem, where the electron-electron
interaction would be neglected. Madey’s theorem analysis of the
FWTWT is important in order to study the small signal gain region
of the FWTWT. In the future work, the gain of the FWTWT would
be analyzed using the Pierce’s theorem, where the space charge effects
(electron-electron interaction) would be taken into consideration. Han
appears to perform the gain analysis of the FWTWT using Pierce’s
theorem, and therefore the results of his study would only be applicable
for the large signal gain region [7].

Glover has performed the gain analysis of the free electron laser
(FEL) using Madey’s theorem, where the wiggler wavelength, λw,

of the FEL is included in the gain expression [13]. Therefore, our
approach in this paper will provide the following benefits:

(a) The normalization method of the spatial harmonic method would
provide the correct beam-wave intersection, in order to obtain
the optimum gain value for the FWTWT. Hence, appropriate
dimensions of the FWTWT can be easily obtained to operate at
any desired frequency, without resorting to numerical methods
(softwares), at least not initially.
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(b) Glover has performed the small signal gain analysis on the free
electron lasers [13]. Therefore, there is a need to perform the small
signal gain analysis of the FWTWT using Madey’s theorem. This
would accurately predict the small signal gain of the FWTWT
compared to the Pierce’s theorem adopted by Han [7].

(c) The small signal gain analysis of the FWTWT using Madey’s
theorem would then be verified by comparing the results with
the results obtained from the numerical single particle analysis.

All TWTs have common operational structures. In a TWT, an
electron gun, emitting an electron beam, is accelerated by the applied
voltage into the interaction region. In this interaction region, energy
exchange will occur between the traveling electrons and the EM wave.
The electrons transfer energies to the EM waves, which results in the
electrons being decelerated, before being dumped into the collector
structure. The ‘seed’ electromagnetic wave in the interaction region
will be amplified and can be extracted with the use of an appropriate
coupler. The type of coupler usually depends on the frequency of
operation of the TWT. A TWT can either operate in the oscillator
mode or in the amplifier mode, where in the former case, an appropriate
positive feedback is applied.

In the ensuing paragraphs, the operation of FWTWT is described
in more detail. FWTWT uses an electric field plane (E-plane) bend
rectangular waveguide, as can be seen in Figure 1 [3]. Circular
apertures are drilled on the axial direction of the FWTWT. An electron
in the beam crosses from the centre of one aperture to the centre of the
next aperture in the straight line axial direction. The EM wave travels

Figure 1. 3-D view of the folded
waveguide traveling wave tube.
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Figure 2. 3-D view of 1
period FWTWT indicating the
dimension parameters.
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Figure 3. The dispersion curve for an FWTWT, with the beam line
of electrons. The spatial harmonic numbers, m, associated with each
branch are shown.

round the bend through the waveguide, as illustrated in Figures 2
and 3.

As an electron in the beam crosses one of the waveguide sections,
it experiences either an accelerating or a decelerating force due to the
transverse electric field of the TE10 mode of the EM wave propagating
along the waveguide [14]. The height of the gap is designed such
that each electron travels in the gap in less than half a period of the
EM wave. A small amount of energy can be exchanged between an
electron and the EM wave. When this electron reaches the next gap, it
can find itself in the same phase relative to the electromagnetic wave
provided the distance travelled by the faster wave is adjusted properly
relative to the distance travelled by the electron. In this way, energy
can be repeatedly and cumulatively transferred between the electrons
and the EM wave in a similar way to a standard traveling wave tube
(TWT) [4, 15–17].

As the accelerated electrons catch up with the decelerated
electrons, bunching of electron occurs. The acceleration voltage can
be adjusted accordingly so that more electrons will lose energy to the
EM wave [4]. As a result the EM wave can be greatly amplified.

For effective coupling or energy exchange to occur, the electron
and EM wave need to be traveling at the same velocity in order for
the interaction to be cumulative. The phase velocity of the wave in
FWTWT is slowed down to the velocity of an electron beam by its
periodic structure [18]. In general periodic structures such as the disk
loaded waveguide, stub loaded transmission line, the helical structure
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and the coupled-cavity structure have periodic reactive load that can
reduce the velocity of the EM wave traveling across the path [18, 19].
In FWTWT, the periodicity of the folded waveguide itself slows down
the velocity of the EM wave.

If the velocity of the electron and the phase velocity of the EM
wave are the same, the interaction is in synchronism. The synchronism
requirement occurs at a particular frequency and phase constant, where
the electron beam line and the EM wave dispersion curve intersects.
This intersection can be shown in a ω-β plot.

To meet the synchronism requirement, the EM wave must be
perturbed in some way. An EM wave traveling within an empty
straight waveguide would have the phase velocity always greater
than or equal to the speed of light. Therefore, it is impossible to
accelerate an electron beam to meet the synchronism requirement
because relativity provides an upper limit of ‘c’ on the speed of the
electron beam. By perturbing the EM wave within the waveguide, the
EM wave axial phase velocity is reduced. As a result, in FWTWT, the
EM wave axial phase velocity is smaller than the velocity of light in
vacuum. Therefore, FWTWT is also known as the slow wave structure.

2. THE DESIGN OF FWTWT

The FWTWT design parameters consist of the physical dimensions
of the waveguide cross section (a and b), the len and h dimensions,
as well as the electron beam acceleration potential, vacc, in order for
the FWTWT to operate in a certain frequency. The maximum gain is
expected to happen if the FWTWT parameters are designed correctly.

The dispersion relationship and the electron beam characteristics
are functions of these design parameters and allow a design equation
to be derived [20–25]. An appropriate normalization procedure allows
the normalized design equation to be derived. The normalized design
equation consists of normalized parameters, and allows all parameters
to be determined if any one of them is known.

In the FWTWT system, strong interactions can only take place
at frequencies near to the dispersion curve and the electron beam line
intersections. It is easier to analyze the operations of FWTWT in
terms of spatial harmonics of the TE10 mode [26].

The m-th spatial harmonics is given by [7]

ω2 = ω2
co +

(
c · len
len + h

)2 [
k − (2m + 1)

π

len

]2
(1)

where len and h are the dimensions of the FWTWT, as can be seen
in Figure 2. The angular cut-off frequency, ωco is given by cπ

a where a
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is the broad dimension of the waveguide and c is the speed of light in
vacuum. k is the wavenumber of the spatial harmonic and is not the
same as the wavenumber of the TE10 mode, kg, which travels through a
straight rectangular waveguide [27–29]. The dispersion curve equation
of a straight rectangular waveguide is shown in (2)

ω2 = ω2
co + c2k2

g (2)

The electron beam line equation is given as follows:

ω = vek (3)

ve is the average velocity of the electrons in the beam.
An example dispersion curve for a FWTWT having a = 18.36mm,

b = 2.701mm, len = 4.051mm and h = 8.931mm is shown in Figure 3.
The electron beam line is accelerated at 9.25 kVolts. The spatial
harmonic numbers, m, associated with each branch are shown. Notice
that the horizontal axis is plotted in units of π

len so that the minimum
of the m = 0 branch happens at k = π/len.

To obtain an effective interaction in FWTWT, the electron beam
should be synchronized with the m = 0 spatial harmonic of the EM
wave. The m = 0 spatial harmonic is chosen as the operating point,
as it has the largest spatial harmonics amplitude among the entire
spatial harmonic components. For the case of forward wave FWTWT,
to obtain a reasonable bandwidth, the dispersion curve line of the EM
wave in the ω-β plot should be tangential to the e-beam line. Without
an appropriate analytical method, it is difficult to design an optimum
FWTWT, as there are many design parameters involved, such as ‘a’,
‘len’, ‘b’. ‘h’ and ‘vacc ’.

For dispersion curves, it is very convenient to plot the normalized
angular frequency versus the normalized wavenumber [26, 30]. In order
to simplify the design process, the normalized dispersion curve for the
m = 0 spatial harmonic is given as follows [26]:

(
ω

ωco

)2

= 1 +
(

len

len + h

)2 (
k

kco
− a

len

)2

(4)

where kco = ω
c = π

a is the cut-off wavenumber of the spatial harmonic.
By using the normalization procedure, Equation (4) can be written

as
y2 = 1 + r2(x− s)2 (5)

where

y =
ω

ωco
x =

k

kco

r =
len

len + h
s =

a

len

(6)
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Similarly, the normalized beam line equation can be written as

ω

ωco
=

vek

c · kco
or y = βex (7)

βe is the average velocity of an electron in the beam relative to the
velocity of light. Equations (5) and (7) can be solved simultaneously
to find the intersection points of the dispersion curve with the electron
beam line.

For the forward EM wave case, the electron beam line is tangential
to the dispersion curve to give broadband operation. This means, the
point of tangential contact between the electron beam line and the
dispersion curve is at the point kop = 3π

2·len which is half way between
the cut-off wavenumber, k = π

len and the point where the m = 0 spatial
harmonics intersects with the m = 1 spatial harmonic (at k = 2π

len).
For the backward EM wave case, the electron beam line intersects

with the EM dispersion curve at k = π
2·len , which is between the point

of intersection at m = −1 spatial harmonic and m = 0 spatial harmonic
and the cut-off wavenumber. In this paper the analysis of backward
wave FWTWT is performed.

With this choice of operating point for the backward wave EM
case, hence xop can be shown to be as follows.

xop =
kop

kco
=

π

2 · len
a

h
=

a

2 · len =
s

2
(8)

By substituting this value of xop in Equation (8) into Equation (4), and
substituting Equation (3) into Equation (4), the following expression
can be obtained:

β2
e =

(
2
s

)2

+ r2 (9)

It is reasonable to assume that the frequency of operation is 1.5 ∗ fco.
By using this assumption, we then obtain the following expression.

1.25c2 π2

a2
=

(
c · len
len + h

)2 ( π

2len

)2
(10)

Equation (10) can be simply written as follows.

r2 =
5
s2

(11)

By substituting Equation (11) into Equation (9), the expression for βe

can be obtained.
βe =

3
s

(12)
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Therefore different backward wave FWTWT designs will differ only in
the value of the relative electron velocity, βe. This will then determine
the factor, s, if the accelerating voltage, Vacc is known.

By substituting Equations (8) and (12) into Equation (9), we
obtained the following expression:

yop = 1.5 (13)

Hence, for m = 0 spatial harmonic, the normalized dispersion
Equation (5) and the beam line Equation (7) can be derived.

y =

√
1 + 5

[(x

s

)
− 1

]2
and y = 3

(x

s

)
(14)

As a result, if Equation (14) are plotted with the vertical axis as
y, and the horizontal axis as (x

s ), hence all possible backward wave
FWTWT have identical graphs as shown in Figure 4. The solid curve
is the m = 0 spatial harmonic, while the dotted line is the e-beam line.

As can be seen in Equation (13), the normalized frequency
of operation, yop is independent of s. Hence, yop is independent
of the acceleration voltage, Vacc for any design. This allows the
broad dimension of the waveguide for any particular frequency to be
determined immediately as follows:

fop =
1.25c

a
(15)
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Figure 5. The FWTWT dispersion curve comparison between the
numerical simulation (using Ansoft HFSS) and the marcuvitz theorem
equivalent circuit model.

In the next step, a particular value of the acceleration voltage,
Vacc is chosen. The relative electron velocity, βe can be obtained as
follows:

βe =

√
1−

(
511

511 + Vacc

)2

(16)

If βe is now known, hence, the value s can be determined from
Equation (12). Since s is also defined as a

len as in Equation (6), the
value of len can now be determined. Finally, by using Equations (6)
and (11), the value h can be determined.

To determine the value of the narrow dimension of the waveguide,
b, we can assume that the transit time of electron across the narrow
dimension of the waveguide, b

ve
is equal to one-fifth period of the EM

wave, 1
5fop

Hence, b, can be determined if the frequency of operation,
fop and the accelerating voltage, Vacc, are known. b is given as follows:

b =
βec

5fop
(17)

The equivalent circuit model for the waveguide can make the design
process easier [31–33]. The Marcuvitz theorem is used to determine the
equivalent circuit model of sharp corners for the FWTWT [32]. The
dispersion curve of a 15-fold FWTWT is simulated using Ansoft HFSS
software. Figure 5 illustrates the result of this HFSS simulation, which
is compared with the result obtained using Marcuvitz method. The
solid line indicates the dispersion curve obtained using the equivalent
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circuit method, while the dotted points indicate the dispersion curve
using HFSS simulation. As can be seen in Figure 5, there is a very
close agreement between the simulation results using HFSS and the
equivalent circuit model which uses the Marcuvitz theorem. This shows
that the equivalent circuit model can be used to derive the dispersion
curve of the FWTWT.

3. EXAMPLE DESIGN OF AN FWTWT

To verify our method, an example design of FWTWT is performed in
the X-band spectrum. A backward wave FWTWT is to be constructed
to operate at 10GHz with a 10 kV electron beam. Therefore a is given
by

a =
1.25c

fop
= 37.47mm

With an accelerating voltage of 10 kV, βe equals to 0.195. Hence, len
can be derived as follows:

s =
3
βe

= 15.38

len =
a

s
= 2.36mm

The value of h is then given by

h = len

{
s√
5
− 1

}
= 13.87mm

The narrow dimension of the FWTWT structure is given by

b =
βec

5fop
= 1.17mm

A check is made to ensure that len− b > 0. This condition is met in
this design, and hence, the design is valid. If this had not been so,
an alternative, lower accelerating voltage would have had to be chosen
and the dimensions recalculated.

4. GAIN OF FWTWT USING MADEY’S THEOREM

Bhattacharjee has performed simulations on the design of FWTWT
sources for Terahertz radiation, using state of the art TWT
softwares [3]. However, the softwares do not provide the physical
insight for rapid design optimization of the FWTWT. Han has
performed analysis and simulations for the design of FWTWT taking
space charge effects into account, i.e., the electron-electron interactions
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are considered, using the Pierce’s theorem [7]. Pierce theorem combines
the Eulerian view of the electron beam with the replacement of the
delay line as propagation structure by an equivalent transmission
line model consisting of distributed inductances, L and capacitances,
C [16, 34].

However, Park has not studied the effect of the gain of the
FWTWT using Madey’s theorem. The FWTWT design analysis using
Madey’s theorem is important in order to arrive at the optimum
operation of the FWTWT in the small signal gain region. In this small
signal gain region, the effect of space charge between the electrons
are not taken into the design consideration. The FWTWT device
operating in the small signal gain region (low acceleration voltage and
current) could be useful to avoid effects that might reduce the stability
of the output. Glover has analyzed the gain of a free electron laser using
Madey’s theorem [13]. The gain analysis of the free electron laser using
Madey’s theorem is related to the parameter wiggler wavelength, λw,
and therefore is could not be applied to FWTWT.

So far, we have analyzed the FWTWT in terms of spatial
harmonics of the TE10 mode propagation of the EM wave. By using
the normalization method, the dimension parameters of the FWTWT
could be obtained if the frequency of operation and the acceleration
voltage are specified. In this section, the small signal gain of an
FWTWT is calculated by using the Madey’s theorem.

Figure 6 shows the plan view of the FWTWT, showing the
dimension parameters used. A TE10 mode propagation of the
wave is assumed to be traveling in the +z′ direction, as shown in
Figure 5 [35, 36]. An electron beam is passed through the FWTWT
from left to right, in the +z direction, as shown in Figure 6. The
interaction between the electron beam and the EM wave in the
waveguide can be thought of in terms of the electrons with a fictitious
continuous slow wave that propagates along the z-axis [37].

Hutter’s original analysis of the dispersion relationship of an
FWTWT states that an expansion into spatial harmonics is possible
using the following equation [1]:

~e(z, t) = ẑ · Re

{ ∞∑
m=−∞

AE
b

len
sinc

(
k+

mb

2

)
exp[j(ωt− k+

mz)]

}
(18)

Equation (18) is the field in the gaps of the FWTWT. k+
m represents

a spatial harmonic with positive group velocity. Hence, this running
wave is carrying power in the positive z-direction, and is a forward wave
along the same direction as the electron beam. AE is the amplitude of
the E-field of the TE10 mode propagation of the wave in the waveguide
having frequency, ω, and the FWTWT wavenumber, kg.
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Figure 6. A plan view of an FWTWT, showing the dimensions. ‘b’ is
the narrow dimension of the waveguide, while ‘a’ is the wide dimension
of the rectangular waveguide (into the paper).

The expression of the general spatial harmonic wavenumbers, k,
is given by

k = k±m =
{

(2m + 1)
π

len
± kg

(
len + h

len

)}
(19)

where m is an integer ranging from −∞ to +∞. The expression for kg

is as follows.
kg =

1
c

√
ω2 − ω2

co (20)

In the FWTWT, the electron beam will interact with these spatial
harmonics. In amplifier configuration, it is possible to achieve
synchronism with only one spatial harmonic at a time. For the
FWTWT operation, the m = 0 forward wave spatial harmonic is
considered, since this results in a higher harmonic amplitude [31, 32].
This then leads to a greater interaction and hence higher gain. The
m = 0 forward spatial harmonic is represented as an EM wave in the
+z direction by the electric field, shown as follows [13, 38].

−→
e+
0 =

AEb

len
sinc

(
k+

0 b

2

)
cos(ωt− k+

0 z)ẑ (21)

where

k = k+
0 =

π

len
+ kg

(
len + h

len

)
(22)

The field contribution can be used with Madey’s theorem to calculate
the gain of the FWTWT. This z-directed field effects the energy of
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electrons in such a way that

d

dt
(γmc2) = −e ·

−→
e+
0 · ~v (23)

The left hand side of Equation (23) represents the rate of increase of
the energy of an electron, while the right hand side is the rate at which
work is done on the electron by the electric field. The right hand side of
Equation (23) is approximated by assuming that the electron velocity
is hardly changed by the interaction. Hence,

~v = ~v0 = vz0ẑ (24)

where vz0 is the unperturbed electron velocity. This means that the
amplitude AE , of the EM wave is also hardly affected, so it may be
taken as a constant. Equation (23) can be written as follows.

dγ

dt
= − e

mc2
AE

b

len
vz0sinc

(
k+

0 b

2

)
cos(ωt− k+

0 z + ϕ) (25)

where a phase, ϕ, has been introduced to allow for a range of entry
times of an electron into the FWTWT. The expression ωt − k+

0 z =
z[ ω

vz0
− k+

0 ] can be written, where ∇k = ω
vz0

− k+
0 .

By dividing both sides of Equation (25) by vz0, and using dz =
vz0dt, the following expression is obtained.

dγ

dz
= −F · cos(ωt− k+

0 z + ϕ) = −F · cos(∇k · z + ϕ) (26)

where

F =
e

mc2
A

b

len
sinc

(
k+

0 b

2

)
(27)

Both sides of Equation (26) are integrated from z = 0 to z = N · len,
where N is the number of folds in the FWTWT. By using the
trigonometric identity 2 sin(A) cos(B) = sin(A + B) + sin(A − b), the
overall change, γ1, in relative energy from entrance to exit is given as
follows.

γ1 =
∫ Nlen

0
− F

∇k
sin(∇ · k · z + ϕ)dz

=
−2F

∇k
sin

(∇k ·N · len
2

)
cos

(∇k ·N · len
2

+ ϕ

)
(28)

If the electron entry times are distributed uniformly in phase from
−π to +π, then Equation (28) indicates that as many electrons will
gain energy as will lose energy. Therefore, no net exchange of energy
between the electrons and the EM wave occurs. This is expressed by
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stating that the average energy change per electron is zero, or, [[γ1]] = 0,
where [[. . . . . .]] indicates averaging over phase, ϕ.

Several approximations have been made in deriving Equation (28).
Hence, this is only a first order result. If better approximations are
made it is found that there is a small but finite change in total energy
of the electrons, so that for the second order result, [[γ2]] 6= 0.

In Madey’s theorem, the second order energy change [[γ2]] can be
related to the previously calculated, first order energy change, [[γ1]] [13].
Madey’s theorem states that

[[γ2]] =
1
2

d

dγ
[[γ2

1 ]] (29)

If the average of the square of γ1 is determined, therefore [[γ1]] can be
solved directly by performing the required differentiation.

Squaring Equation (26) gives

γ2
1 =

(
2F

∇k

)2

sin2

(∇k ·N · len
2

)
· cos2

(∇k ·N · len
2

+ ϕ

)
(30)

Averaging on ϕ gives

γ2
1 =

1
2

(
2F

∇k

)2

sin2

(∇k ·N · len
2

)
(31)

Substituting Equation (31) into the Second Order Madey’s theorem,
and using x = ∇k·N ·len

2 , the following expression is obtained.

[[γ2]] =
1
4
(F ·N · len)2

d

dx
sinc2

(∇k ·N · len
2

)∣∣∣∣
x=∇k·N·len

2

d

dγ

(∇k ·N · len
2

)
(32)

Since sinc(x) = sin(x)
x , the following expression is obtained.

d

dr

(∇k ·N · len
2

)
=

N · len
2

d

dγ

(
ω

Vz0
− k+

0

)
=

N · len · ω
2

d

dγ

(
1

vz0

)

=
−N · len · ω

2 · v2
z0

dvz0

dγ
=
−N · len · ω
2 · c · β3

z0γ
3

(33)

where βz0 = vz0
c is the relative electron velocity, and γ is the relativistic

mass factor of an electron. Therefore, the average energy gained per
electron in passing through N folds of the FWTWT is given by.

[[γ2]]mc2 =
−1
4

(F ·N · len)2
d

dx
sinc2

(∇k ·N · len
2

)
N · len · ω
2 · c · β3

z0γ
3
mc2

(34)



Progress In Electromagnetics Research, PIER 98, 2009 151

If the electron beam current is Ie, then Ie
e electrons pass into the

FWTWT per second. Hence, the total power lost by the electrons
and therefore the power gained by the EM wave is

Pout − Pin = [[γ2]]mc2 Ie

e
=

1
4
(F ·N · len)2

d

dx

sinc2

(∇k ·N · len
2

)
N · len · ω ·m · c2Ie

2cβ3
z0γ

3e
(35)

where x = ∇k·N ·len
2 . Pin is the EM wave power entering the FWTWT

and Pout is the power leaving the FWTWT. The gain of the FWTWT
is defined as the ratio of the increase in power gained by the EM wave
to the input EM wave power, i.e., Pout−Pin

Pin
. The FWTWT gain is

different from the electronic gain, which is the ratio of output power
to the input power, Pout

Pin
. For the TE10 mode of the wave propagation

in a rectangular waveguide, the input power is given by [39]

Pin =
1A2

Ea · b · c · kg

4.120π · ω (36)

Therefore, the FWTWT gain is given by

GainFWTWT =

(
e·N ·b
2·m·c2

)2
sinc2

(
k+
0 b
2

)
·
(

N ·len·ω
2·β3

z0γ3c

)
·
(

m·c2
e

)
·Ie · d

dxsinc2(x)
(

1·a·b·c·kg

4.120π·ω
)

(37)
Where the differential coefficient is evaluated at x = ∇k·N ·len

2 . It
can be shown that the FWTWT gain is proportional to N3. A
MATHCAD program is designed to view the result of the gain plot
of FWTWT using Madey’s theorem. The general parameters used in
this MATHCAD program is shown in Table 1.

Figure 7 shows the FWTWT gain plot using Madey’s theorem.
The x-axis is the frequency sweep from 8.5 to 12 GHz, while the y-axis
is the FWTWT gain values. The largest gain occurs at 9.735 GHz
at with a gain of 0.8817, or 88.17%. The gain of the FWTWT in
Equation (37) seems to be independent of frequency for a fixed electron
gun current and accelerating voltage and a fixed number of folds.
However, if the operating frequency is increased, the dimensions of the
FWTWT have to be decreased in proportion. Hence, the dimensions
of the hole through which the electron beam travels are also reduced.
Therefore, the electron beam current would also have to be reduced
as the operating frequency is increased. This reduction is required so
that we do not lose too much beam current by interception to the walls
of the FWTWT.
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Table 1. The general parameters used to determine the gain of
FWTWT using Madey’s theorem.

Vacc 8.70 kV
N 40

Frequency sweep 8.5 to 12 GHz
Ie 5mA
A 18.359mm
B 2.701mm

Len 4.051mm
H 8.931mm

Table 2. The FWTWT dimensions used so that the results can be
compared with Bhattacharjee’s work [3].

a 300µm
b 43µm

len 66µm
h 70µm
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Figure 7. The plot of the gain of FWTWT using Madey’s theorem.

The results obtained using the small signal gain analysis using
Madey’s theorem would now be compared with the work done by
Bhattacharjee [3]. The FWTWT designed by Bhattacharjee operates
at the frequency of 560 GHz. For this comparison exercise, the
FWTWT dimensions used as input parameters into Equation (3) are
shown in Table 2.
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Figure 8. Electronic gain versus frequency for FWTWT.

The dimensions quoted in Table 2 are not all the same as quoted
by Bhattacharjee, since he used semicircular folds in his design, not the
sharp bends analyzed in our design [3]. For this comparison purpose,
our FWTWT device was assumed to be driven with an electron beam
with an acceleration voltage of 10.64 kV and a current of 0.5 mA.
Bhattacharjee quotes 10.9 kV and 0.5 mA [3]. The FWTWT device
as an input parameter into Equation (37) has 220 number of folds, N .
The calculations from Equation (37) show that the maximum electronic
gain is 20.26, or equivalent to 13.1 dB. This occurs at 543.9 GHz, and
is shown in Figure 8.

Bhattacharjee’s simulations were performed with the state of the
art TWT softwares (MAFIA, TW3 and CHRISTINE), and gave an
electronic gain of about 13 dB at a frequency of 542 GHz [3]. However,
Bhattacharjee’s device consisted of just 100 folds compared with the
220 used in our simulation [3]. Since the power gained by the EM
wave is proportional to N3, as shown in Equation (35), therefore
the agreement appears much better than it actually is. Based on
Bhattacharjees’s simulation, the gain of FWTWT is much greater than
is predicted by our Equation (35).

The approach adopted in our paper, using Madey’s theorem is a
small signal gain model, i.e., the model can only accurately predict
small signal gains. As can be seen in Figure 11, the derived maximum
gain is very large, i.e., the output power could not be stated as only
marginally larger than the input.
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5. GAIN OF FWTWT USING NUMERICAL SINGLE
PARTICLE SIMULATION

The gain of the FWTWT is now being calculated using the numerical
single particle simulation [13]. In this simulation, the equations of
motion of an electron passing through the FWTWT are solved [13]
The results obtained using these simulations are compared with the
analytical method using Madey’s theorem.

From Equation (25), the equation that governs the motion of
electrons is given by the following expression.

dγ

dt
= − e

mc2
AE

b

len
vz(t)sinc

(
k+

0 b

2

)
cos(ωt− k+

0 z + ϕ) (38)

Using, Newton’s Force Law, d
dt(γm0v) = −e · E, the following

expressions are obtained.

d[γ(t)mvz(t)]
dt

= −eAE
b

len
sinc

(
k+

0 b

2

)
cos(ωt− k+

0 z + ϕ) (39)

dz(t)
dt

= vz(t) (40)

Equations (38)–(40) can be written in terms of dz by using the
relationship dt = dz

vz(t) .

dγ(z)
dz

= − e

mc2
AE

b

len
sinc

(
k+

0 b

2

)
cos(ωt− k+

0 z + ϕ) (41)

Using Newton’s Force Law, d
dt(γm0v) = −e · E, we obtained the

expression dvz(z)
dt = −e·E

m·γ3 . By substituting dt = dz
vz(t) into dvz(z)

dt = −e·E
m·γ3 ,

we obtain the following expressions.

dvz(z)
dz

= − e

γ3mvz(z)
AE

b

len
sinc

(
k+

0 b

2

)
cos(ωt− k+

0 z + ϕ) (42)

dt(z)
dz

=
1

vz(z)
(43)

Equations (41)–(43) are solved using MATLAB program, utilizing the
Ordinary Differential Equation (ODE) built-in function. A set of
electrons, uniformly distributed in phase from −π to π, are simulated
passing through the FWTWT. The electrons’ final energies, γ ·N · len ·
m · c2 are averaged. Any reduction in energy for the electron means an
increment of energy of the EM wave. Hence, the gain of the FWTWT
using numerical single particle simulation can be obtained The general
parameters used in the MATLAB program are shown in Table 3.



Progress In Electromagnetics Research, PIER 98, 2009 155

Table 3. The general parameters used in the MATLAB program to
determine the gain of FWTWT using numerical single particle analysis
simulation.

Vacc 8.70 kV
N 40 or 3
I 5mA
f 9.735GHz
a 18.359 mm
b 2.701mm
h 8.931mm

len 4.051mm
Pin 50mW
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Figure 9. The variation of electron energy loss with position down the
FWTWT. N = 3, I = 5 mA and 9 electrons are used. The electrons
are uniformly distributed in phase from −π to +π.

The variations of the energy of electrons as they travel down the
axis of an FWTWT are plotted in Figures 9 to 12. The first plot,
Figure 9, shows the results using N = 3 folds, I = 5 mA and 9 number
of electrons. The second plot, Figure 10, shows the results using N = 3
folds, I = 5mA and 5 number of electrons. The third plot, Figure 11,
shows the results using N = 40 folds, I = 5 mA and 9 number of
electrons. The fourth plot, Figure 12, shows the results using N = 40
folds, I = 5 mA and 5 number of electrons.
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The x-axis is the relative z position in units of z/len, while the
y-axis indicates the energy loss at exit in kV. The different curves in
Figures 9–12 indicate the energy loss (in kV) of the electrons (with
different phases) as they travel down the FWTWT along the z-axis.
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Figure 10. The variation of electron energy loss with position down
the FWTWT. N = 3, I = 5 mA and 5 electrons are used. The electrons
are uniformly distributed in phase from −π to +π.
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Figure 11. The variation of electron energy loss with position down
the FWTWT. N = 40, I = 5 mA and 9 electrons are used. The
electrons are uniformly distributed in phase from −π to +π.
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Each electron is interacting with a spatially discontinuous electric field
that only exists in the waveguide gaps of the FWTWT. On average,
an electron takes one and a half cycles of the EM wave to cross the
gap. The curves are obtained for FWTWT having gaps which are one
and a half cycles of the EM wave. This effect can be seen more clearly
in Figures 9 and 10, where the number of folds, N , is made equal to 3.
As an example, taking the lowest curves in Figures 9 and 10, there are
no energy changes for the distance traveled in the first two half cycles.
Only the last half cycle contributes. In between the gaps, the energy
remains constant.
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Figure 12. The variation of electron energy loss with position down
the FWTWT. N = 40, I = 5 mA and 5 electrons are used. The
electrons are uniformly distributed in phase from −π to +π.

Table 4. Comparison of the gain of FWTWT using Madey’s theorem
and numerical analysis.

Madey’s Theoren
Numerical Single

Particle Analysis

I = 5mA; N = 40, 9 number

of electons used for numerical

single particle analysis

FWTWT

Gain = 88.02%

FWTWT

Gain = 85.33%

I = 8mA; N = 40, 9 number

of electons used for numerical

single particle analysis

FWTWT

Gain = 140.83%

FWTWT

Gain = 136.53%
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The gain results for the Madey’s theorem and the numerical
analysis are included in Table 4. The agreement between the numerical
analysis and the Madey’s theorem is excellent in spite of the fact that
only 9 electrons are used. It is expected that the agreement between
the two methods can be improved if larger number of electrons are
used. However, the run time of the MATLAB program using larger
number of electrons will be longer.

6. CONCLUSION AND FUTURE WORK

In this paper, we have succeeded in deriving an analytical model for
the design of an FWTWT to operate at any desired frequency, with
examples given for the backward wave FWTWT case. Using the spatial
harmonic method analysis and the normalization procedure, with the
knowledge of the operating frequency, fop and acceleration voltage,
Vacc , the user can therefore obtain the dimension parameters of any
desired FWTWT. The analysis we proposed in this paper ensures that
intersection point between electron beam line and the dispersion curve
occurs at the desired point for optimum beam-wave interaction. For
forward wave FWTWT, this occurs at the half way point between
the cut-off frequency of m = 0 spatial harmonic and the intersection
point between m = 0 and m = 1 spatial harmonics. For backward
wave FWTWT, this occurs at the half way point between the cut-
off frequency of m = 0 spatial harmonic and the intersection point
between m = −1 and m = 0 spatial harmonics.

The gain of an FWTWT in the small gain, single electron regime
has been investigated. The small gain model using Madey’s theorem
has been adopted. Madey’s theorem can accurately predict small gains.
An analytical formula derived by using the Madey’s theorem has been
developed. The numerical simulation of the electron beams interacting
with the EM wave has also been performed. The results of the analysis
using Madey’s theorem have been confirmed numerically by the single
particle analysis simulation.

For the Madey’s theorem to be applicable, the amplitude AE , of
the EM wave remains unchanged by the interaction with the electron
beams. The Madey’s theorem applied for FWTWT covers the initial,
small signal gain region, which means for short length and low current
FWTWT. Therefore, the number of folds and the general parameters
chosen (as shown in Tables 1 and 3) for the Madey’s theorem and
numerical single particle simulation are small so that small gain
conditions apply. Hence, in practice, the Madey’s theorem model can
be used provided that the FWTWT gain is limited to less than about
2.9. Although the Madey’s theorem gain formula can only represent
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a practical situation where the maximum FWTWT gain is less than
about 2.9, the formula does provide a potential figure of any particular
device that is useful in the initial stages of a design.

If larger number of folds and beam current are used, the results
using Madey’s theorem show that the FWTWT has a much greater
gain than the magnetostatic and Cherenkov FELs. Therefore, Madey’s
theorem can be used to provide a potential indication of the gain
magnitude of FWTWT. On the other hand, it is an advantage
to operate an FWTWT oscillator in the small signal gain regime,
where Madey’s theorem applies in order to avoid problems with mode
competition, mode hopping, and other effects that might reduce the
stability of the output.

Madey’s theorem is a single electron model, where the electron-
electron interactions or space charge effects are ignored. Pierce’s
theory, which includes the space charge effects, states that after the
EM wave has traveled a short distance through the device where
its growth is low, the gain of the EM wave becomes exponential,
which is significantly more than the N3 dependence predicted by
Madey’s theorem [40]. In the future, further work will be performed
to investigate the gain of the FWTWT using Pierce’s theorem.
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23. Sjöberg, D., “Determination of propagation constants and
material data from waveguide measurements,” Progress In
Electromagnetics Research B, Vol. 12, 163–182, 2009.

24. Heh, D. Y. and E. L. Tan, “Dispersion analysis of FDTD schemes
for doubly lossy media,” Progress In Electromagnetics Research
B, Vol. 17, 327–342, 2009.

25. Kalyanasundaram, N. and G. N. Babu, ”Dispersion of electromag-
netic waves guided by an open tape Helix I,” Progress In Electro-
magnetics Research B, Vol. 16, 311–331, 2009.

26. Stuart, R. A., “The design of folded waveguide travelling wave
tubes,” A report for FELDEC, October 16, 2004.

27. Nie, Z.-P., S. Yan, S. He, and J. Hu, “On the basis functions with
traveling wave phase factor for efficient analysis of scattering from
electrically large targets,” Progress In Electromagnetics Research,
PIER 85, 83–114, 2008.

28. Su, D. Y., D.-M. Fu, and Z.-H. Chen, “Numerical modeling of
active devices characterized by measured S-parameters in FDTD,”
Progress In Electromagnetics Research, PIER 80, 381–392, 2008.

29. Vaish, A. and H. Parthasarathy, “Analysis of a rectangular waveg-
uide using finite element method,” Progress In Electromagnetics
Research C, Vol. 2, 117–125, 2008.

30. Shahi, A. K., V. Singh, and S. P. Ojha, “Dispersion



162 Malek

characteristics of electromagnetic waves in circularly cored highly
birefringent waveguide having elliptical cladding,” Progress In
Electromagnetics Research, PIER 75, 51–62, 2007.

31. Mondal, M. and A. Chakrabarty, “Resonant length calculation
and radiation pattern synthesis of longitudinal slot antenna in
rectangular waveguide,” Progress In Electromagnetics Research
Letters, Vol. 3, 187–195, 2008.

32. Marcuvitz, N., Waveguide Handbook, Peregrinus, Stevenage, U.K.,
1986.

33. Che, W., C. Li, D. Wang, L. Xu, and Y. Chow, “Investigation on
the ohmic conductor losses in substrate-integrated waveguide and
equivalent rectangular waveguide,” Journal of Electromagnetic
Waves and Applications, Vol. 21, No. 6, 769–780, 2007.

34. Eichmeier, J. A. and M. Thumm, Vacuum Electronics:
Components and Devices, Springer, 2008.

35. Carle, P. L., “New accurate and simple equivalent circuit for
circular E-plane bends in rectangular waveguide,” Electronics
Letters, Vol. 23, No. 10, 531–532, May 7, 1987.

36. Panda, D. K. K., A. Chakrabarty, and S. R. Choudhury,
“Analysis of Co-channel interference at waveguide joints using
multiple cavity modeling technique,” Progress In Electromagnetics
Research Letters, Vol. 4, 91–98, 2008.

37. Sumathy, M., K. J. Vinoy, and S. K. Datta, “Equivalent circuit
analysis of serpentine foldedwaveguide slow-wave structures for
millimeter-wave travelingwave tubes,” International Journal of
Infrared and Millimeter Waves, Vol. 30, No. 2, 151–158,
February 2009

38. Stuart, R. A., “The gain of a FWTWT,” A report for FELDEC,
November 12, 2004.

39. Pozar, D. M., Microwave Engineering, John Wiley & Sons, Inc.,
1998.

40. Kumar, D., P. K. Choudhury, and O. N. Singh, “Towards
the dispersion relations for dielectric optical fibers with helical
windings under slow- and fast-wave considerations — A
comparative analysis,” Progress In Electromagnetics Research,
PIER 80, 409–420, 2008.


