Vol. 97
Latest Volume
All Volumes
PIER 180 [2024] PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2009-10-12
Full-Wave Modeling of Multiple Vias Using Differential Signaling and Shared Antipad in Multilayered High Speed Vertical Interconnects
By
Progress In Electromagnetics Research, Vol. 97, 129-139, 2009
Abstract
A 3D full-wave approach, based on the Foldy-Lax multiple scattering equations, is successfully extended to model massively-coupled multiple vias using differential signaling and shared antipad in high speed vertical interconnects. For the first time, this method has been used and tested on via-pair with shared antipad in multilayered structure. The magnetic frill current source on the port is calculated by using the finite difference method. Banded matrix iterative method is applied to accelerate the finite difference calculation. Numerical example of 15 signal via-pairs and 20 ground shielding vias in 6-layer board demonstrates that this approach is able to model the via-pair with shared antipad and to include all the coupling effects among multiple vias. The electrical performances of different signal driving schemes are provided and discussed. The coupling crosstalk on various via-pairs is compared. The improvement of signal integrity is shown by using differential signaling and shared antipad for via-pair in multilayered structure. The results are compared with HFSS and SIwave in accuracy and CPU. The CPU using Foldy-Lax approach is three orders of magnitude faster than using HFSS, and two orders of magnitude faster than using SIwave. The accuracy of Foldy-Lax is within 2% difference from HFSS up to 20 GHz, and outperforms SIwave in accuracy.
Citation
Boping Wu, and Leung Tsang, "Full-Wave Modeling of Multiple Vias Using Differential Signaling and Shared Antipad in Multilayered High Speed Vertical Interconnects," Progress In Electromagnetics Research, Vol. 97, 129-139, 2009.
doi:10.2528/PIER09091707
References

1. Wu, D., Y. Fan, M. Zhao, and B. Zheng, "Vertical transition and power divider using via walled circular cavity for multilayer millimeter wave module," Journal of Electromagnetic Waves and Applications, Vol. 23, 729-735, 2009.
doi:10.1163/156939309788019840

2. Rimolo-Donadio, R., X. Gu, Y. H. Kwark, M. B. Ritter, B. Archambeault, F. de Paulis, Y. Zhang, J. Fan, H. BrÄuns, and C. Schuster, "Physics-based via and trace models for efficient link simulation on multilayer structures up to 40 GHz," IEEE Trans. Microw. Theory Tech., Vol. 57, 2072-2083, 2009.
doi:10.1109/TMTT.2009.2025470

3. Tsang, L., H. Chen, C.-C. Huang, and V. Jandhyala, "Modeling of multiple scattering among vias in planar waveguides using Foldy-Lax equations," Micro. Opt. Technol. Lett., Vol. 31, 201-208, 2001.
doi:10.1002/mop.1398

4. Tsang, L., H. Chen, C.-C. Huang, and V. Jandhyala, "Methods for modeling interactions between massively coupled multiple vias in multilayered electronic packaging structures,", U.S. Patent 7149666, Dec. 12, 2006.
doi:10.1002/mop.1398

5. Wu, B. and L. Tsang, "Modeling multiple vias with arbitrary shape of antipads and pads in high speed interconnect circuits," IEEE Microw. Wireless Compon. Lett., Vol. 19, 12-14, 2009.
doi:10.1109/LMWC.2008.2008532

6. Wu, B. and L. Tsang, "Signal integrity analysis of package and printed circuit board with multiple vias in substrate of layered dielectrics," IEEE Trans. Adv. Packag., in press, 2009.

7. Liu, E.-X., E.-P. Li, Z. Z. Oo, X.Wei, Y. Zhang, and R. Vahldieck, "Novel methods for modeling of multiple vias in multilayered parallel-plate structures," IEEE Trans. Microw. Theory Tech., Vol. 57, 1724-1733, 2009.
doi:10.1109/TMTT.2009.2022883

8. UWEE Via Tool. Ver. 2.21, Laboratory of Applications and Computations in Electromagnetics and Optics, University of Washington, Seattle, WA, Jul. 2009, [Online] Available: www.ee.washington.edu/research/laceo/Via Tool/.

9. HFSSTM. Ver. 11.0, Ansoft Corporation, Pittsburgh, PA, Dec. 2008, [Online] Available: www.ansoft.com/products/hf/hfss/.

10. Gu, X., B. Wu, C. Baks, and L. Tsang, "Fast full wave analysis of PCB via arrays with model-to-hardware correlation," Proc. IEEE Electrical Performance of Electronic Packaging and Systems Conf. (EPEP'09), Portland, Oregon, USA, 2009.

11. Wu, B. and L. Tsang, "Signal integrity analysis for 3D high-speed interconnects using Foldy-Lax multiple scattering equations," Progress In Electromagnetics Research Symposium Abstracts, Vol. 640, Beijing, China, March 23-27, 2009.

12. Sadiku, M. N. O., Numerical Techniques in Electromagnetics, 2nd Ed., CRC, Boca Raton, FL, 2001.

13., SIwaveTM Ver. 3.5, Ansoft Corporation, Pittsburgh, PA, Dec. 2008, [Online] Available: www.ansoft.com/products/si/siwave/.

14. Huang, C. C., L. Tsang, and C. H. Chan, "Multiple scattering among vias in lossy planar waveguides using SMCG method," IEEE Trans. Adv. Packag., Vol. 25, 181-188, 2002.
doi:10.1109/TADVP.2002.803262

15. Ong, C.-J., D. Miller, L. Tsang, B. Wu, and C.-C. Huang, "Application of the Foldy Lax multiple scattering method to the analysis of vias in ball grid arrays and interior layers of printed circuit boards," Micro. Opt. Technol. Lett., Vol. 49, 225-231, 2007.
doi:10.1002/mop.22091

16. Sha, W., X.-L. Wu, Z.-X. Huang, and M.-S. Chen, "Waveguide simulation using the high-order symplectic finite-difference time-domain scheme," Progress In Electromagnetics Research B, Vol. 13, 237-256, 2009.
doi:10.2528/PIERB09012302