Vol. 18
Latest Volume
All Volumes
PIERB 109 [2024] PIERB 108 [2024] PIERB 107 [2024] PIERB 106 [2024] PIERB 105 [2024] PIERB 104 [2024] PIERB 103 [2023] PIERB 102 [2023] PIERB 101 [2023] PIERB 100 [2023] PIERB 99 [2023] PIERB 98 [2023] PIERB 97 [2022] PIERB 96 [2022] PIERB 95 [2022] PIERB 94 [2021] PIERB 93 [2021] PIERB 92 [2021] PIERB 91 [2021] PIERB 90 [2021] PIERB 89 [2020] PIERB 88 [2020] PIERB 87 [2020] PIERB 86 [2020] PIERB 85 [2019] PIERB 84 [2019] PIERB 83 [2019] PIERB 82 [2018] PIERB 81 [2018] PIERB 80 [2018] PIERB 79 [2017] PIERB 78 [2017] PIERB 77 [2017] PIERB 76 [2017] PIERB 75 [2017] PIERB 74 [2017] PIERB 73 [2017] PIERB 72 [2017] PIERB 71 [2016] PIERB 70 [2016] PIERB 69 [2016] PIERB 68 [2016] PIERB 67 [2016] PIERB 66 [2016] PIERB 65 [2016] PIERB 64 [2015] PIERB 63 [2015] PIERB 62 [2015] PIERB 61 [2014] PIERB 60 [2014] PIERB 59 [2014] PIERB 58 [2014] PIERB 57 [2014] PIERB 56 [2013] PIERB 55 [2013] PIERB 54 [2013] PIERB 53 [2013] PIERB 52 [2013] PIERB 51 [2013] PIERB 50 [2013] PIERB 49 [2013] PIERB 48 [2013] PIERB 47 [2013] PIERB 46 [2013] PIERB 45 [2012] PIERB 44 [2012] PIERB 43 [2012] PIERB 42 [2012] PIERB 41 [2012] PIERB 40 [2012] PIERB 39 [2012] PIERB 38 [2012] PIERB 37 [2012] PIERB 36 [2012] PIERB 35 [2011] PIERB 34 [2011] PIERB 33 [2011] PIERB 32 [2011] PIERB 31 [2011] PIERB 30 [2011] PIERB 29 [2011] PIERB 28 [2011] PIERB 27 [2011] PIERB 26 [2010] PIERB 25 [2010] PIERB 24 [2010] PIERB 23 [2010] PIERB 22 [2010] PIERB 21 [2010] PIERB 20 [2010] PIERB 19 [2010] PIERB 18 [2009] PIERB 17 [2009] PIERB 16 [2009] PIERB 15 [2009] PIERB 14 [2009] PIERB 13 [2009] PIERB 12 [2009] PIERB 11 [2009] PIERB 10 [2008] PIERB 9 [2008] PIERB 8 [2008] PIERB 7 [2008] PIERB 6 [2008] PIERB 5 [2008] PIERB 4 [2008] PIERB 3 [2008] PIERB 2 [2008] PIERB 1 [2008]
2009-11-03
Photonic Bandgaps in Quasiperiodic Multilayer Structures Using Fourier Transform of the Refractive Index Profile
By
Progress In Electromagnetics Research B, Vol. 18, 311-325, 2009
Abstract
In this paper, photonic bandgaps (PBGs) of the quasiperiodic structures is calculated using the Fourier transform of the refractive index profile. Comparing the reflectivity and Fourier spectrum of multilayer structure refractive index, we find that a peak in the Fourier spectrum is equivalent to a sinusoidal term in the refractive index. The wavelength of the peak location in the Fourier spectrum is half the wavelength where a PBG is located. Using Fourier transform analysis of the refractive index of any multilayer structure, we can determine the location of the PBGs of that structure. Peaks in the Fourier spectrum can be used to design reflective band optical filters in optical communication systems. The filtering wavelengths are twice the peaks in the Fourier spectrum.
Citation
Saeed Golmohammadi, Y. Rouhani, Karim Abbasian, and Ali Rostami, "Photonic Bandgaps in Quasiperiodic Multilayer Structures Using Fourier Transform of the Refractive Index Profile," Progress In Electromagnetics Research B, Vol. 18, 311-325, 2009.
doi:10.2528/PIERB09091701
References

1. Archambault, J. L., L. Reekie, and P. St. J. Russell, "High reflectivity and narrow bandwidth fiber gratings written by a single excimer pulse," Electron. Lett., Vol. 26, 730-731, 1990.
doi:10.1049/el:19900476

2. Kashyap, R., J. R. Armitage, R. Wyatt, S. T. Davey, and D. L. Williams, "Allfiber narrowband reflection gratings at 1500 nm," Electron. Lett., Vol. 30, 1977-1978, Nov. 1994.
doi:10.1049/el:19941357

3. Angus Macleod, H., Thin Film Optical Filter, 2nd Ed., McGraw-Hill, 1989.

4. Yablonovitch, E., "Inhibited spontaneous emission in solid state physics and electronics," Phys. Rev. Lett., Vol. 58, 2059-2062, 1987.
doi:10.1103/PhysRevLett.58.2059

5. ITU-T Recommendation G.698.1, 2005.

6. Packiaraj, D., K. J. Vinoy, and A. T. Kalghatgi, "Analysis and design of a compact multi-layer ultra wide band filter," Progress In Electromagnetics Research C, Vol. 7, 111-123, 2009.
doi:10.2528/PIERC09030606

7. Golmohammadi, S., M. K. Moravvej-Farshi, A. Rostami, and A. Zarifkar, "Narrowband DWDM filters based on Fibonacci-class quasiperiodic structures," Opt. Express, Vol. 15, 10520-10532, 2007.
doi:10.1364/OE.15.010520

8. Shechtman, D., I. Blech, D. Gratias, and J. W. Cahn, "Metallic phase with long-range orientational order and no translational symmetry," Physical Review Letters, Vol. 53, 1951, 1984.
doi:10.1103/PhysRevLett.53.1951

9. Kohmoto, M., B. Sutherland, and K. Iguchi, "Localization inoptics: Quasiperiodic media," Physical Review Letters, Vol. 58, 2436, 1987.
doi:10.1103/PhysRevLett.58.2436

10. Sibilia, C., P. Masciulli, and M. Bertolotti, "Optical properties of quasiperiodic (self-similar) structures," Pure Appl. Opt., Vol. 7, 383-391, 1998.
doi:10.1088/0963-9659/7/2/028

11. Gellermann, W., M. Kohmoto, B. Sutherland, and P. C. Taylor, "Localization of light waves in Fibonacci dielectric multilayers," Physical Review Letters, Vol. 72, 633, 1994.
doi:10.1103/PhysRevLett.72.633

12. Macia, E., "Optical engineering with Fibonacci dielectric multilayers," Applied Physics Letters, Vol. 73, 3330, 1998.
doi:10.1063/1.122759

13. Lusk, D., I. Abdulhalim, and F. Placido, "Omnidirectional reflection from Fibonacci quasiperiodic one-dimensional photonic crystal," Optics Communications, Vol. 198, 273, 2001.
doi:10.1016/S0030-4018(01)01531-0

14. Peng, R. W., M. Mazzer, X. Q. Huang, F. Qiu, M. Wang, A. Hu, and S. S. Jian, "Symmetry-induced perfect transmission of light waves in quasiperiodic dielectric multilayers," Applied Physics Letters, Vol. 80, 3063, 2002.
doi:10.1063/1.1468895

15. Watanabe, K. and K. Kuto, "Numerical analysis of optical waveguides based on periodic Fourier transform," Progress In Electromagnetics Research, Vol. 64, 1-21, 2006.
doi:10.2528/PIER06060802

16. Khalaj-Amirhosseini, M., "Analysis of periodic and aperiodic coupled nonuniform transmission lines using the Fourier series expansion," Progress In Electromagnetics Research, Vol. 65, 15-26, 2006.
doi:10.2528/PIER06072701

17. Golmohammadi, S., M. K. Moravvej-Farshi, A. Rostami, and A. Zarifkar, "Spectral analysis of Fibonacci-class one-dimensional quasi-periodic structures," Progress In Electromagnetics Research, Vol. 75, 69-84, 2007.
doi:10.2528/PIER07051902

18. Vorob'ev, N. N., Fibonacci Numbers, a translation of Chisla Fibonachchi, Gostekhteoretizdat, 1951.

19. Dumitriu, I., "On generalized Tribonacci sequences and additive partitions," Disc. Math., Vol. 219, 65-83, 2000.
doi:10.1016/S0012-365X(99)00369-6

20. Yeh, P., Optical Waves in Layered Media, Wiley, 1988.

21. Born, E. and M. Wolf, Fundamentals of Optics,, 3rd Ed., Cambridge University Press, 1999.