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Abstract—In this paper, photonic bandgaps (PBGs) of the
quasiperiodic structures is calculated using the Fourier transform of
the refractive index profile. Comparing the reflectivity and Fourier
spectrum of multilayer structure refractive index, we find that a peak in
the Fourier spectrum is equivalent to a sinusoidal term in the refractive
index. The wavelength of the peak location in the Fourier spectrum is
half the wavelength where a PBG is located. Using Fourier transform
analysis of the refractive index of any multilayer structure, we can
determine the location of the PBGs of that structure. Peaks in the
Fourier spectrum can be used to design reflective band optical filters
in optical communication systems. The filtering wavelengths are twice
the peaks in the Fourier spectrum.
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1. INTRODUCTION

Today, next generation services have a great impact on design and
topology of the communication networks. The rapidly growing demand
for larger bandwidth motivates high bit rate communication networks
toward dense wavelength division multiplexing (DWDM) technology as
a solution. Using DWDM, the bandwidth of the optical fiber is used
by a number of the wavelengths separated according to the ITU-T.
Design and fabrication of the narrow and multiband filters for DWDM
applications is a challenge for optical device engineers and designers.

Optical multilayer structures, such as fiber Bragg gratings [1, 2],
multilayer thin-film filters [3], have been used as wavelength selective
optical filters. The essential property of dielectric multilayer structure
is the existence of photonic band gap that forbids propagation of
a certain frequency range of light, where the structure acts as a
filter in that frequency [4]. This property enables one to control
light with amazing facility and produce effects that are impossible
with conventional optics. Existence of a PBG in the spectra of
multilayer structure is equivalent to a band of reflective filter. This
filter can be used in optical communication systems. In order to use
in DWDM systems, the filter should have several bands according to
the wavelengths defined in the standard [5].

Multiband filter can be constructed by cascading single band
filters, but there are some problems such as increased insertion loss and
decreased reliability of the system. Narrow and multiband filters based
on multilayer structures — as an alternative for cascaded single-band
filters in DWDM systems — have some difficulty in manufacturing
because of high number of layers with low refractive index difference
between them [6]. In addition, quasiperiodic structures can be used
as multiband filters in DWDM systems [7]. Importance of study
of Photonic bandgaps in spectra of these structures is related to
application of these structures as DWDM filters.

Quasiperiodic structures were discovered in 1984 by Sechtmann.
These are non-periodic structures that are constructed following
a defined recursive generation rule [8]. Light localization within
quasiperiodic structures using Fibonacci sequence as the generation
rule of the structure has been shown by Kohmoto et al. [9]. Then Sibilia
et al. demonstrated self-similar patterns in transmission spectrum
of quasiperiodic structures [10]. Existence of bandgaps in spectral
response of these structures was demonstrated experimentally by
Gellermann et al. [11]. Macia studied these structures numerically by
means of Transfer Matrix Method [12]. Omnidirectional bandgaps of
these structures are reported by Lusk et al. [13]. Perfect transmission
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in symmetric quasiperiodic multilayer structures based on Fibonacci
sequence was observed by Peng et al. [14]. Fast Fourier Transform has
already been used for spectral analysis of some periodic waveguide and
grating structures [15, 16], but, so far, very little effort is reported on
applying this transform to study of spectral contents of quasiperiodic
multilayer structures [17].

In this paper, we will use Fourier transform of the quasiperiodic
structure refractive index to find PBGs of the Fibonacci based
quasiperiodic multilayer structures. We will compare spectral content
of the Fourier transform of the refractive index profile with reflectance
spectrum of the structure which is calculated by TMM. We will
demonstrate that we can determine the PBGs of any multilayer
structure only using the Fourier transform of the refractive index
profile. Our case study is focused on the Fourier transform of
generalized Fibonacci structures G(j, n).

This paper is organized as following. In Section 2, Fibonacci and
generalized Fibonacci sequence has been introduced, and basic idea
behind realization of these sequences in photonic field is discussed.
In Section 3, we apply Fourier transform to generalized Fibonacci
based multilayer structures, and a recurrent relation for the Fourier
terms has been obtained. In Section 4, reflectance of the Generalized
Fibonacci structure using transfer matrix method (TMM) and spectral
content using Fourier transform has been obtained and compared with
each other. Finally, in Section 5, some conclusions of the paper are
presented.

2. MULTILAYER STRUCTURES BASED ON
FIBONACCI SEQUENCES AND GENERALIZED
FIBONACCI SEQUENCES

By definition, the first two Fibonacci numbers are 0 and 1, and each
remaining number is the sum of the previous two. Some sources
omit the initial 0, instead beginning the sequence with two 1s. In
mathematical terms, the sequence uj of Fibonacci numbers is defined
by the recurrence relation [18]:

uj = uj−1 + uj−2, j ≥ 2 (1)

The first seven terms of Fibonacci numbers are: 1, 1, 2, 3, 5, 8, and
13.

For realization of this sequence in the field of photonics, two types
of dielectric materials with different refractive indices are selected as
building blocks (denoted by A and B), and summation in the number
field is translated to concatenation of these building blocks. Applying
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the Fibonacci rule and starting by S0 = B, S1 = A, next three terms
of the sequence will be S2 = AB, S3 = ABA, S4 = ABAAB, and
general term of the multilayer structure based on this sequence will be
in the following form:

Sj = Sj−1Sj−2, j ≥ 2 (2)

Multilayer structures based on Fibonacci sequences are known as
substitutional structures because some substitution rules can be found
that by applying them to the first term next structures of the sequence
can be constructed. Substitution rules of this structure can be easily
found and are given by B → A, A → AB. There are two steps for
generalizing of Fibonacci sequence. First step is to multiply previous
terms by a positive integer as below:

uj = nuj−1 + muj−2, j ≥ 2 (3)

For realization of this generalization, multiplication by an integer is
translated to repeat the building blocks. Second step in generalizing
is using more than two terms for constructing general term of the
sequence as shown below:

uj = auj−1 + buj−2 + cuj−3, j ≥ 3 (4)

Recently mentioned sequence by Eq. (4) is named Tribonacci [19]. In
this generalization step, there is no limit on the number of used terms
to construct the general term. In this paper, we will focus on the
first step of generalization and use a special case by using m = 1.
We also use G(j, n) for notation of multilayer structures based on this
generalized Fibonacci sequences which is given by:

G(j, n) = [G(j − 1, n)]nG(j − 2, n), j ≥ 2 (5)

We refer j as generation number and n as structure order. It should
be noted that in addition to recurrence relation (Eq. (5)), the first
two terms of the sequence are required to describe the structure
distinctively. In this paper, we will use B and Bn−1A as the first
two terms of the generalized Fibonacci sequence. By using the general
term equation (Eq. (5)) three next terms of the sequence can be written
as:

G(2, n) = (Bn−1A)nB

G(3, n) =
[
(Bn−1A)nB

]n Bn−1A

G(4, n) =
{ [

(Bn−1A)nB
]n Bn−1A

}n

(Bn−1A)nB

(6)

Substitution rules of the sequence can be obtained easily:

B → Bn−1A, A → Bn−1AB (7)
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3. FOURIER TRANSFORM OF REFRACTIVE INDEX
OF THE ONE DIMENSIONAL MULTILAYER
STRUCTURES BASED ON GENERALIZED FIBONACCI
SEQUENCE

In this section, we use the Fourier transform to extract the spectral
content of the refractive index profile. We start from first term of
the generalized Fibonacci structure by using the Fourier transform
formula:

F [f(z)] = F (k) =
∫ +∞

−∞
f(z)e−ikzdz (8)

To take Fourier transform of the G(0, n) = B by using Eq. (8), we
have assumed horizontal axis as optical length equal to physical length
multiplied by refractive index. Then we can write:

F [G(0, n, z)] =
∫ D

0
nBe−ikzdz =

nB

−ik

(
e−ikD − 1

)
, (9)

where k = 2π/λ is the wave vector, and λ is the wavelength in free
space D = nBdB = nAdA, which is the optical length of both layers.

For the next term G(1, n) = Bn−1A, the Fourier transform of the
refractive index profile is:

F [G(1, n, z)]=
∫ (n−1)D

0
nBe−ikzdz +

∫ nD

(n−1)D
nAe−ikzdz (10)

F [G(1, n, z)]=
nB

−ik
(e−ik(n−1)D−1)+

nA

−ik
e−ik(n−1)D(e−ikD−1) (11)

Now, we can proceed to the next term G(2, n) = (Bn−1A)nB; its
refractive index profile is demonstrated in Fig. 1.

As can be seen in Fig. 1, this structure is mainly constructed from
shifted versions of the previous term G(1, n, z), except the last layer
which is constructed from shifted G(0, n, z) structure.

G(2, n, z) = G(1, n, z)G(1, n, z)nDG(1, n, z)2nD . . .

G(1, n, z)(n−1)nDG(0, n, z)n2D (12)

Figure 1. Refractive index Profile of the G(2, n, z).
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In Eq. (12), the indices nD, 2nD, . . . , (n−1)D and n2D are the amount
of refractive index profile of the G(1, n, z) in the z axis. Using the shift
theorem of Fourier transform we have:

F [G(1, n, z)nD] = e−iknDF [G(1, n, z)]

F [G(1, n, z)2nD] = e−ik2nDF [G(1, n, z)]

F [G(1, n, z)(n−1)nD] = e−ik(n−1)nDF [G(1, n, z)],
...

(13)

Finally, by adding set of equations denoted by (13) we can write:

F [G(2, n, z)] =
[
1 + e−iknD + · · ·+ e−ik(n−1)nD

]
F [G(1, n, z)]

+F [G(0, n, z)n2D] (14)

F [G(2, n, z)] =
e−ikn2D − 1
e−iknD − 1

F [G(1, n, z)] + e−ikn2DF [G(0, n, z)] (15)

Equation (15) is a recurrence relation for Fourier transform of G(2, n, z)
in terms of Fourier transforms of G(1, n, z) and G(0, n, z). Similarly,
we can write for the refractive index of the next term of the generalized
Fibonacci sequence:

G(3, n, z) = G(2, n, z)G(2, n, z)(n2+1)D · · ·
G(2, n, z)(n−1)(n2+1)DG(1, n, z)n(n2+1)D (16)

Applying the Fourier transform to G(3, n, z) we have:

F [G(3, n, z)]=
e−ikn(n2+1)D−1
e−ik(n2+1)D−1

F [G(2, n)]+ e−ikn(n2+1)DF [G(1, n)]

(17)
Equation (17) is a similar relation for F [G(3, n, z)] as a recurrence
function of F [G(2, n, z)] and F [G(1, n, z)]. We can continue this
operation to the next terms of G(j, n, z), and recurrence relations are
obtained as follows:

F [G(4, n, z)] =

(
e−ikn(n3+2n)D − 1
e−ik(n3+2n)D − 1

)
F [G(3, n, z)]

+e−ikn(n3+2n)DF [G(2, n, z)] (18)

F [G(5, n, z)] =

(
e−ikn(n4+3n2+1)D − 1
e−ik(n4+3n2+1)D − 1

)
F [G(4, n, z)]

+e−ikn(n4+3n2+1)DF [G(3, n, z)] (19)
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By comparing the obtained results for F [G(3, n, z)], F [G(4, n, z)] and
F [G(5, n, z)], we can suggest a general recurrence relation for the
Fourier transform of the refractive index of multilayer structures based
on generalized Fibonacci sequence:

F [G(j, n, z)] =
[P (j, n)]n − 1
[P (j, n)]− 1

F [G(j − 1, n, z)]

+[P (j, n)]nF [G(j − 2, n, z)], j ≥ 2 (20)

Where:

F [G(0, n, z)] =
nB

−ik

(
e−ikD − 1

)
(21)

F [G(1, n, z)] =
nB

−ik

(
e−ik(n−1)D−1

)
+

nA

−ik
e−ik(n−1)D

(
e−ikD− 1

)
(22)

and

P (0, n) = 1 (23)

P (1, n) = e−ikD (24)
P (j, n) = [P (j − 1, n)]nP (j − 2, n), j ≥ 2 (25)

P (j, n) is an exponential function, and its exponent can be written as
−ikf(n,D), where f(n,D) is the optical thickness of G(j − 1, n). For
example, P (j, n) for j = 2, 3, 4, 5 is given as below:

P (2, n) = [P (1, n)]nP (0, n) = e−iknD

P (3, n) = [P (2, n)]nP (1, n) = e−ikn2De−ikD = e−ik(n2+1)D

P (4, n) = [P (3, n)]nP (2, n) = e−ikn(n2+1)De−iknD = e−ik(n3+2n)D

P (5, n) = [P (4, n)]nP (3, n) = e−ik(n3+2n)De−ikn(n2+1)D

= e−ik(n4+3n2+1)D

(26)

Eq. (20) demonstrates a recurrence relation between Fourier transforms
of the refractive index profiles of the generalized Fibonacci structure.
Comparing Eq. (20) with Eq. (5), we realize that the recurrence
relation between G(j, n), G(j − 1, n) and G(j − 2, n) in the direct
domain will appear in the Fourier domain between F [G(j, n, z)],
F [G(j − 1, n, z)] and F [G(j − 2, n, z)]. Then, the Fourier transform
of the refractive index of the generalized Fibonacci structures can be
given in terms of refractive index Fourier transforms of the two previous
structures according to Eq. (20). In order to construct the spectral
content of any structure, we should plot |F [G(j, n, z)]| which can be
calculated using Eq. (20). From the investigation of |F [G(j, n, z)]|
plot, we are going to argue about PBGs of the whole structure. Here,
we want to answer the question “What is the relationship between
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the Fourier spectrum and PBGs of a multilayer structure?”. We will
compare the Fourier transform spectrum with the optical reflectivity of
the generalized Fibonacci structure that is calculated using (TMM) [20]
to answer this question.

In any multilayer structure the electric field of optical signals is
composed of forward and backward components [21]. Using TMM,
first matrices are derived in such a way that they relate the forward
and backward components of the electric field across an interface and
a given thickness, in order to properly represent wave propagation in
each layer of the multilayer structure. Wave propagation through each
layer is calculated by using the matrices that relate the field at one side
to another side of that layer. In TMM the reflectivity from first layer
is calculated by the field propagation from the end layer to the first
layer using matrix relations. A PBG in the reflectivity occurs when
the forward components of a propagating field at a given wavelength
becomes low due to the instructive interference of partially Fresnel
reflected fields at each interface.

4. SIMULATION RESULTS

In this section, we present the simulation results using two different
methods, Fourier transform and TMM. We compare the spectral
content of the Fourier transform of the refractive index profile and
optical reflectivity spectrum of G(j, n), in order to justify PBGs of
this structure.

First, we discuss the optical length of the layers A and B. It is
well known that for achieving maximum reflectivity in a multilayer
structure we should set the optical length of the layers [20]:

D =
mλc

4
, (m = 1, 3, 5, . . .) (27)

n(z)

nB

nA

z

Figure 2. Refractive index profile of the one dimensional periodic
structure.
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where, λc is the center wavelength of the optical reflection spectrum.
In order to compare the spectral contents of the Fourier transform
and optical reflectivity spectrum of different structures, we start from
a well known periodic structure, which is composed of two different
layers denoted by A and B as shown in Fig. 2. In this figure, the
period of optical length variations of layers A and B is 2D. It
is well-known that the Fourier transform of a square function with
period D contains superposition of sinusoidal terms with periods
2D, 6D, . . . , 2(2n+1)D. The sinusoidal terms in the Fourier transform
of the refractive index profile will appear as a peak in the spectrum
of the Fourier transform. For the periodic structure of Fig. 2, the
peaks will appear in λ = 2D, 6D, . . .. The height of these peaks will
be decreased with increasing the wavelength.

The spectral content of a multilayer structure may contain several
peaks, where each peak demonstrates a sinusoidal term in the Fourier
transform of the refractive index profile of that structure. As an
example the spectral content of the Fourier transform of a sample
periodic structure is demonstrated in Fig. 3. From the Bragg condition,
the PBG of this structure is located at λB = 2(nBdB + nAdA) = 4D,
while as seen from Fig. 3, the peak with largest height is located at
λ = 2D, in the Fourier spectrum. From the Bragg condition we know
that the PBG of this structure is located at λB = 4D = 1550 nm. From
Fig. 5, we see a peak with large height is located at λ = 2D = 750 nm.
The peak at λ = 750 nm is due to the sinusoidal term in the Fourier
transform of the refractive index profile of the periodic structure. It
should be noted that the refractive index profile variation is a square
wave, and its main sinusoidal term has the same frequency as that of
square wave.
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Figure 3. Spectral content of the Fourier transform of the refractive
index profile of a sample periodic structure. The parameters are
D = 387.5 nm, λC = 1550 nm, nA = 1.45, nB = 1.65, dA = 267.24 nm
and dB = 234.85 nm.
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After a general study on Fourier transform of the periodic
structure, we are going to investigate PBGs of the generalized
Fibonacci structure using both discussed methods of Fourier transform
and TMM. We calculate spectral response of this structure for various
values of j and n. In all structures, we use nA = 1.45, nB = 1.65, λC =
1550 nm, D = λC/4 = 387.5 nm, dA = 267.24 nm and dB = 234.85 nm.
And refractive indices of media before and after of the structure are
the same as material A.

In Figs. 4–9, the obtained reflectance of these structures using
TMM and spectral content of the same structure using Fourier
transform algorithm is depicted respectively. It should be discussed
that average value of refractive index distribution of the structures has
been canceled from refractive index profile to remove spectral content
of the average value from the Fourier transform spectrum.

Figures 4(a) and 4(c) demonstrate the calculated reflectivity from
TMM and Fourier spectrum of the G(3, 2). Figs. 4(b) and 4(d)
demonstrate an enlarged section of Figs. 4(a) and 4(c) respectively.
Figs. 4(b) and 4(d) show that the appeared peaks have similar
contents, but the peak wavelengths in the Fourier spectrum are

(a)

(d)(b)

(c)

Figure 4. (a) Reflectance, (b) enlarged section of (a), (c) Fourier
transform, and (d) enlarged section of (c) for G(3, 2).



Progress In Electromagnetics Research B, Vol. 18, 2009 321

half of the wavelengths where the peaks of the TMM spectrum are
located. This pattern is repeated for the structures, G(3, 3), G(3, 5)
and G(3, 15) where the reflectivity calculated using TMM and the
spectrum calculated using Fourier transform for these structures are
demonstrated in Figs. 5, 6 and 7 respectively. A peak in the reflectivity
from TMM calculation at a given wavelength is equivalent to existence
of a PBG at that wavelength. Also a peak at the Fourier spectrum
of the refractive index of the structure is equivalent to existence of a
sinusoidal term in the refractive index of the structure. The Bragg
condition for a peak in the Fourier spectrum occurs at twice of that
wavelength as we mentioned about periodic structure. A PBG occurs
in the structure at wavelength twice while only a peak appears in the
Fourier spectrum. This shows Fourier transform of the refractive index
is applicable to analysis of reflectance and transmission profile of these
structures, usually takes less processing time of the PC and is useful
to reach reflectance profile of the large structures in very short time
in comparison with TMM method. To have an insight into high order
structures, spectral content and reflectance of G(4, n) for n = 11, 15
are depicted in Figs. 8 and 9.

(a)

(d)(b)

(c)

Figure 5. (a) Reflectance, (b) enlarged section of (a), (c) Fourier
transform, and (d) enlarged section of (c) for G(3, 3).
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(a)

(d)(b)

(c)

Figure 6. (a) Reflectance, (b) enlarged section of (a), (c) Fourier
transform, and (d) enlarged section of (c) for G(3, 5).

(a) (b)

Figure 7. (a) Reflectance and (b) Fourier transform for G(3, 15).

Very sharp photonic bandgaps in spectra of these structures
reveal the potential for applications in dense wavelength division
multiplexing systems (DWDM) such as filtering, interleaving/de-
interleaving devices, DWDM dispersion compensation and multi-
wavelength narrow linewidth lasers.

We can calculate Fourier transform of the refractive index profile
of any multilayer structure using tools such as fast Fourier transform
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(a) (b)

Figure 8. (a) Reflectance and (b) Fourier transform for G(4, 11).

(a) (b)

Figure 9. (a) Reflectance and (b) Fourier transform for G(4, 15).

(FFT). From the calculated spectrum, one can determine the peaks of
the spectrum and the PBGs of the structure, while the wavelength of
one PBG is twice of the wavelength of that peak. Since each PBG is
equivalent to a reflective band in optical communication systems, we
can design these filters using the FFT spectrum of the refractive index
profile. Central wavelengths of multilayer filters are strongly dependent
on the structure parameters such as layer thicknesses, refractive indices
and arrangement of layers [7]. Effects of physical and geometrical
parameters on the central wavelength location, bandwidth and other
properties of the multilayer filter can be studied using analysis of
Fourier spectrum variations under variation of structure parameters [7].

5. CONCLUSION

In this paper, photonic bandgaps (PBGs) of the quasiperiodic structure
have been obtained using the Fourier transform of the refractive index
profile. Fourier transform of refractive index profile for generalized
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Fibonacci structure has been calculated analytically, and a recursive
relation between Fourier transform of these structures with different
generation numbers has been introduced. Comparing the reflectivity
that has been calculated using TMM with Fourier spectrum that
has been calculated using Fourier recursive relation for generalized
Fibonacci structure, we have found that a peak in the Fourier spectrum
is equivalent to a sinusoidal term in the refractive index. The
wavelength of the peak location in the Fourier spectrum is half the
wavelength where a PBG is located. So, by analyzing the Fourier
transform of the refractive index of any multilayer structure we can
determine the location of the PBGs of that structure. Since each PBG
is equivalent to a stop band of a filter, we can design multiband filters
using FFT spectrum of any given multilayer structure.

REFERENCES

1. Archambault, J. L., L. Reekie, and P. St. J. Russell, “High
reflectivity and narrow bandwidth fiber gratings written by a
single excimer pulse,” Electron. Lett., Vol. 26, 730–731, 1990.

2. Kashyap, R., J. R. Armitage, R. Wyatt, S. T. Davey, and
D. L. Williams, “Allfiber narrowband reflection gratings at
1500 nm,” Electron. Lett., Vol. 30, 1977–1978, Nov. 1994.

3. Angus Macleod, H., Thin Film Optical Filter, 2nd edition,
McGraw-Hill, New York, 1989.

4. Yablonovitch, E., “Inhibited spontaneous emission in solid state
physics and electronics,” Phys. Rev. Lett., Vol. 58, 2059–2062,
1987.

5. ITU-T Recommendation G.698.1, 2005.
6. Packiaraj, D., K. J. Vinoy, and A. T. Kalghatgi, “Analysis and

design of a compact multi-layer ultra wide band filter,” Progress
In Electromagnetics Research C, Vol. 7, 111–123, 2009.

7. Golmohammadi, S., M. K. Moravvej-Farshi, A. Rostami, and
A. Zarifkar, “Narrowband DWDM filters based on Fibonacci-class
quasiperiodic structures,” Opt. Express, Vol. 15, 10520–10532,
2007.

8. Shechtman, D., I. Blech, D. Gratias, and J. W. Cahn, “Metallic
phase with long-range orientational order and no translational
symmetry,” Physical Review Letters, Vol. 53, 1951, 1984.

9. Kohmoto, M., B. Sutherland, and K. Iguchi, “Localization
inoptics: Quasiperiodic media,” Physical Review Letters, Vol. 58,
2436, 1987.

10. Sibilia, C., P. Masciulli, and M. Bertolotti, “Optical properties of



Progress In Electromagnetics Research B, Vol. 18, 2009 325

quasiperiodic (self-similar) structures,” Pure Appl. Opt., Vol. 7,
383–391, 1998.

11. Gellermann, W., M. Kohmoto, B. Sutherland, and P. C. Taylor,
“Localization of light waves in Fibonacci dielectric multilayers,”
Physical Review Letters, Vol. 72, 633, 1994.

12. Macia, E., “Optical engineering with Fibonacci dielectric
multilayers,” Applied Physics Letters, Vol. 73, 3330, 1998.

13. Lusk, D., I. Abdulhalim, and F. Placido, “Omnidirectional
reflection from Fibonacci quasiperiodic one-dimensional photonic
crystal,” Optics Communications, Vol. 198, 273, 2001.

14. Peng, R. W., M. Mazzer, X. Q. Huang, F. Qiu, M. Wang, A. Hu,
and S. S. Jian, “Symmetry-induced perfect transmission of light
waves in quasiperiodic dielectric multilayers,” Applied Physics
Letters, Vol. 80, 3063, 2002.

15. Watanabe, K. and K. Kuto, “Numerical analysis of optical
waveguides based on periodic Fourier transform,” Progress In
Electromagnetics Research, PIER 64, 1–21, 2006.

16. Khalaj-Amirhosseini, M., “Analysis of periodic and aperiodic
coupled nonuniform transmission lines using the Fourier series
expansion,” Progress In Electromagnetics Research, PIER 65, 15–
26, 2006.

17. Golmohammadi, S., M. K. Moravvej-Farshi, A. Rostami, and
A. Zarifkar, “Spectral analysis of Fibonacci-class one-dimensional
quasi-periodic structures,” Progress In Electromagnetics Research,
PIER 75, 69–84, 2007.

18. Vorob’ev, N. N., Fibonacci Numbers, a translation of Chisla
Fibonachchi by H. Moss, Gostekhteoretizdat, Moscow-Leningrad,
1951.

19. Dumitriu, I., “On generalized Tribonacci sequences and additive
partitions,” Disc. Math., Vol. 219, 65–83, 2000.

20. Yeh, P., Optical Waves in Layered Media, Wiley, New York, 1988.
21. Born, E. and M. Wolf, Fundamentals of Optics, 3rd edition,

Cambridge University Press, 1999.


