Vol. 9
Latest Volume
All Volumes
PIERM 130 [2024] PIERM 129 [2024] PIERM 128 [2024] PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2009-09-30
Band Structure and Dispersion Properties of Photonic Quasicrystals
By
Progress In Electromagnetics Research M, Vol. 9, 65-78, 2009
Abstract
In this paper, for developing analytical and semi-analytical methods to evaluate band structure in photonic quasicrystals the perturbation theory is examined. It is shown that more isotropic and complete photonic band gap can be observed under low dielectric contrast for photonic quasicrystals in comparison with ordinary crystals and because of this feature of photonic quasicrystals, perturbation theory is suitable for evaluation of these structures. In this work, we show that using perturbation semianalytical method one can obtain complete band structure for quasicrystals that are interesting for terahertz technology especially and microwave and optical engineering too. Also, we investigate that complete band gap is appeared in quasicrystals in low refractive index contrast and with increasing number of fold in quasicrystals gap size and isotropy are increased.
Citation
Ali Rostami, and Samiye Matloub, "Band Structure and Dispersion Properties of Photonic Quasicrystals," Progress In Electromagnetics Research M, Vol. 9, 65-78, 2009.
doi:10.2528/PIERM09091002
References

1. Suck, J. B., M. Schreiber, and P. Haussler, Quasicrystals: An Introduction to Structure, Physical Properties, and Applications, Springer, 2004.

2. Jansssen, T., G. Chapuis, and M. de Boissieu, Aperiodic Crystals: From Modulated Phases to Quasicrystals, Oxford University Press, 2007.

3. Janssen, T., "Crystallography of quasicrystals," Acta. Cryst., Vol. A42, 261-271, 1986.

4. Levine, D., "Quasicrystals," J. de Physique, Vol. C8, 397-402, 1985.

5. Zoorob, M. E., M. D. B. Charlton, G. J. Parker, J. J. Baumberg, and M. C. Netti, "Complete photonic band gaps in 12-fold symmetric quasicrystals," Lett. to Nature, Vol. 404, 740-743, 2000.
doi:10.1038/35008023

6. Shechtman, D., I. Blech, D. Gratias, and J. W. Canh, "Metallic phase with long-range orientational order and no translational symmetry," Phys. Rev. Lett., Vol. 53, 1951-1954, 1984.
doi:10.1103/PhysRevLett.53.1951

7. Levine, D. and P. Steinhardt, "Quasicrystals I. Definition and structure," Phys. Rev. B, Vol. 34, 596-615, 1986.
doi:10.1103/PhysRevB.34.596

8. Kaliteevski, M. A., S. Brand, R. A. Abram, T. F. Krauss, P. Millar, and R. M. De La Rue, "P. Millar, R. M. De La Rue,".
doi:10.1103/PhysRevB.34.596

9. Rechtsman, M. C., H. C. Jeong, P. M. Chaikin, and S. Torquato P. J. Steinhardt, "Optimized structures for photonic quasicrystals," Phys. Rev. Lett., Vol. 101, 073902, 2008.
doi:10.1103/PhysRevLett.101.073902

10. Joannopoulos, J. D., R. D. Meade, and J. N. Winn, "Photonic Crystals: Molding the Flow of Light," Princeton University Press, 1995.

11. Janssen, T., "Quasicrystals, comparative dynamics," Nature Materials, Vol. 6, 925-926, 2007.
doi:10.1038/nmat2073

12. Romero-Vivas, J., D. N. Chigrin, A. V. Lavrinenko, and C. M. Sotomayor Torres, "Resonant add-drop filter based on a photonic quasicrystal," Optics Express, Vol. 13, No. 3, 826-835, 2005.
doi:10.1364/OPEX.13.000826

13. Mnaymneh, K. and R. C. Gauthier, "Mode localization and band-gap formation in defect-free photonic quasicrystals," Optics Express, Vol. 15, No. 8, 5090-5099, 2007.
doi:10.1364/OE.15.005089

14. Gauthier, R. C., "FDTD analysis of out-of-plane propagation in 12-fold photonic quasi-crystals," Optics Communications, Vol. 269, 395-410, 2007.
doi:10.1016/j.optcom.2006.08.013

15. Lu, T.-W., P.-T. Lee, C.-C. Tseng, and Y.-Y. Tsai, "Modal properties and thermal behaviors of high quality factor quasi-photonic crystal microcavity with different central post sizes," Optics Express, Vol. 16, No. 17, 12591-12598, 2008.
doi:10.1364/OE.16.012591

16. Zito, G., B. Piccirillo, E. Santamato, A. Marino, V. Tkachenko, and G. Abbate, "FDTD analysis of photonic quasicrystals with di®erent tiling geometries and fabrication by single-beam computer-generated holography," J. Opt. A: Pure Appl. Opt., Vol. 11, 024007, 2009.
doi:10.1088/1464-4258/11/2/024007

17. Hiett, B. P., D. H. Beckett, S. J. Cox, J. M. Generowicz, and M. Molinari, "Photonic band gaps in 12-fold symmetric quasicrystals," Journal of Material Science: Materials in Electronics, Vol. 14, 413-416, 2003.
doi:10.1023/A:1023969221915

18. Zhang, X., Z. Li, B. Cheng, and D.-Z. Zhang, "Non-near-field focus and maging of an unpolarized electromagnetic wave through high-symmetry quasicrystals," Optics Express, Vol. 15, No. 3, 1292-1300, 2007.
doi:10.1364/OE.15.001292

19. Chen, A.-L., Y.-S. Wang, Y.-F. Guo, and Z.-D. Wang, "Band structures of Fibonacci phononic quasicrystals," Solid State Communications, Vol. 145, 103-108, 2008.
doi:10.1016/j.ssc.2007.10.023

20. Yang, Y. and G. P. Wang, "Two-dimensional photonic crystals constructed with a portion of photonic quasicrystals," Optics Express, Vol. 15, No. 10, 5991-1996, 2007.
doi:10.1364/OE.15.005991

21. Ochiai, T. and K. Sakoda, "Nearly free-photon approximation for two-dimensional photonic crystal slabs," Phys. Rev. B, Vol. 64, 045108, 2001.
doi:10.1103/PhysRevB.64.045108

22. Brennan, K. F., The Physics of Semiconductors (With Applications to Optoelectronic Devices), Cambridge University Press, 1999.

23. Sakurai, J. J., "Addison-Wesley Publishing Company," Modern Quantum Mechanics, 1994.