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Abstract—In this paper, for developing analytical and semi-analytical
methods to evaluate band structure in photonic quasicrystals the
perturbation theory is examined. It is shown that more isotropic
and complete photonic band gap can be observed under low dielectric
contrast for photonic quasicrystals in comparison with ordinary
crystals and because of this feature of photonic quasicrystals,
perturbation theory is suitable for evaluation of these structures. In
this work, we show that using perturbation semianalytical method
one can obtain complete band structure for quasicrystals that are
interesting for terahertz technology especially and microwave and
optical engineering too. Also, we investigate that complete band gap
is appeared in quasicrystals in low refractive index contrast and with
increasing number of fold in quasicrystals gap size and isotropy are
increased.

1. INTRODUCTION

Quasicrystals have inherent potentials that have been subject of
important theoretical developments in both solid-state physics and
photonics engineering [1–5]. Quasicrystals were discovered in nature
first in AlMn metallic alloys, and exhibit a lot of unique electronic
properties [6]. While electronic properties of quasicrystals have been
studied thoroughly, their photonic counterparts have been subject of
less attention and deserve further investigations. Quasicrystals are
like regular electronics crystal in that it has long-range translational
order and long-range orientational order. However, the translational
order is not periodic and the structure does not have rotational point
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symmetry [7]. Photonic quasicrystals are demonstrated to be more
beneficial for getting interesting photonic band gap features such as,
more isotropic and complete photonic band gaps under lower dielectric
contrast, than the conventional photonic crystals due to their high level
of rotational symmetry [5, 8, 9].

For evaluation band structure of photonic crystals, some
important concepts such as Brillouin zone and Bloch theorem have
been used [10]. Unfortunately, for quasicrystals, Brillouin zone in the
usual sense do not exist. In these structures, it is possible to construct
an analogue called Pseudo-Brillouin zone [11]. The exact theoretical
prediction on the photonic band structures of photonic quasicrystals
is currently a numerical challenge, however it is generally believed
that analytical studies based on some approximations can helpful to
understand physical properties.

In most papers, for obtaining transmission properties and band
structures of 2-D photonic quasicrystals, numerical methods have been
used. For example, band structures of 2-D octagonal and decagonal
and dodecagonal photonic quasicrystals have been calculated by finite
difference time domain (FDTD) analysis [12–16]. Also, other numerical
methods such as finite element method [17], multiple scattering
method [18], transfer matrix method [19] and plane wave expansion
method [8, 20] usually have been popular for determining optical
properties of photonic quasicrystals. So far, analytical and semi-
analytical approach like perturbation method has not been studied
for investigating these structures. However, Ochiai and Sakoda have
proposed perturbation method to determination band structure of
hexagonal lattice in 2001 [21].

In this letter, we will obtain the band structure of photonic
quasicrystals by using semi-analytical method such as perturbation
theory. In this direction, Pseudo-Brillouin zone for quasicrystal will be
defined. It will be shown that 2-D photonic quasicrystals have more
isotropic complete photonic band gap under lower dielectric contrast
in comparison with ordinary photonic crystals.

The organization of this paper is as follows.
In Section 2, a mathematical model for band structure evaluation

of 2-D photonic quasicrystals is developed. Simulation results and
discussions are illustrated in Section 3. Finally, the paper ends with a
conclusion.
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2. BAND STRUCTURE EVALUATION OF 2-D
PHOTONIC QUASICRYSTAL

As we mentioned in introduction, the photonic quasicrystals have
many exciting properties. One of the most important characteristic
of photonic quasicrystals is an isotropic complete photonic band gap
under lower dielectric contrast. To demonstrate these properties, band
structure of these structures must be obtained. In this direction,
first, refractive index of photonic quasicrystal is expressed as a sum
of periodic functions, where the amplitudes of periodic functions in
comparison with the constant refractive index are much small. Then,
pseudo-Brillouin zone for these structures must be defined. After that,
perturbation theory can be considered for solving wave equation and
the band structure is determined. Finally, a parameter that is used for
measuring isotropy of photonic band gap is defined. In the following,
the method of band structure evaluation of 2-D photonic quasicrystal
will be investigated step by step.

2.1. Refractive Index Modeling

Right now, we can develop refractive index of 2-D photonic
quasicrystals as a superposition of refractive indexes for periodic
crystals [7]. A function is defined as quasi-periodic if it expressed
as a sum of periodic functions with periods, which at least some
of these periods are incommensurate (i.e., their ratio is irrational).
Using presented definition, we can express the refractive index of 2-
D photonic quasicrystals in the same way provided that the ratio of
periods of periodic terms must be irrational. Then, the refractive index
of photonic quasicrystals can be given as

n (ρ) = n0 +
N∑

i=1

ni cos (Gi.ρ), (1)

where n0, ni, ρ and Gi are average refractive index, amplitude of
periodic terms, the projection of r in the x-y plane and the ith
reciprocal lattice vector of quasicrystal respectively. The number N
determines the order of the rotational symmetry of the quasicrystal
pattern. The reciprocal lattice vectors are given by

Gi =
2π

a

(
cos

(
2πi

N

)
, sin

(
2πi

N

))
, (2)
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2.2. Mathematical Model

The Maxwell equations for linear and lossless materials are considered.
It is remarkable fact that many interesting and useful properties arise
from the elementary case of linear and lossless materials. In addition
the theory of these materials is much simpler to understand, making
it an excellent foundation on which to build the theory of more
complex media. Because the Maxwell equations are linear, however,
one can separate the time dependence from the spatial dependence
by expanding the fields into a set of harmonic modes. It should be
considered that there is no great limitation, because one knows by
Fourier analysis that any solution using an appropriate combination
of these harmonic modes can be obtained. As it mentioned in many
photonics text books [10], the equations governing the modes profile
for a given frequency are given by

∇×
(

1
ε (r)

∇×H (r)
)

=
ω2

c2
ε (r)H (r) ,

∇ ·H (r) = 0,
(3)

where H(r), ε(r), ω, c are the magnetic field, dielectric constant
and Eigen-frequency of the mode and the vacuum speed of light
respectively. Also, electric field can be obtained using

E (r) =
1

ωε0ε (r)
∇×H (r) (4)

We identify the left side of the Eq. (3) as operator Θ acting on H(r)
similar to eigenvalue equation. It should mention that the operator Θ
is a Hermitian operator and thus the Maxwell equation is arranged as
an eigenvalue problem for the magnetic field H(r) and then the E(r)
via Eq. (4) can be calculated.

For 2-D case, the eigenvalue equations are much simplified if the
K vector is parallel to the 2-D plane. In this case, the modes must be
oscillatory in the z-direction; with no restrictions on the wave vector
kz, because the system is homogeneous in that direction. In the case of
2-D photonic crystal, the system has discrete translational symmetry
in the x-y plane. So by applying Bloch’s theorem, one can focus on
the value of k|| that are in the Brillouin zone. Unfortunately, for
quasiperiodic systems, Brillouin zone in the usual sense do not exist. In
these systems, the reciprocal lattice vectors of a quasiperiodic structure
densely fill all reciprocal space. However, it is often useful to choose
a subset of basic reciprocal lattice vectors that corresponds to the
relatively intense spots in the diffraction pattern. In addition, although
quasicrystals do not possess a Brillouin zone, it is possible to construct
an analogue called the pseudo-Brillouin zone which is defined by lines
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bisecting the basic reciprocal lattice vectors [11]. By defining pseudo-
Brillouin zone for quasicrystal, one pays attention to the values of k||
in to this zone. The label n (band number) is used to label the modes
in order of increasing frequency. Indexing the modes of quasicrystal
by kz and k|| and n, they take the familiar form of Bloch states.

H(n,kz ,k||) (r) = eik||ρeikzzu(n,kz ,k||) (ρ) (5)

In this equation, ρ is the projection of r in the x-y plane and u(ρ) is
a profile of modes. Also, in this case kz is unrestricted. As we know,
there are two kinds of polarizations, transverse-electric (TE) modes and
transverse-magnetic field (TM). The band structure for TE and TM
modes can be completely different. In this paper, we mainly restrict
ourselves to in-plane (kz = 0) propagation. As mentioned before, the
refractive index of quasicrystal can be developed as a superposition of
periodic crystals refractive index.

n (ρ) = n0 + µ

N∑

i=1

ni cos (Gi.ρ), (6)

where µ is the small perturbation parameter. If the amplitude of
periodic terms ni in comparison with constant part n0 are much small,
the perturbation theory can be used for determining the eigenfrequency
of quasicrystal.

The idea is to begin with the modes of idealized homogeneous
medium (as an unperturbed system), and using analytical tools to
approximately evaluate the effect of small changes in the dielectric
function (as a profile of quasiperiodic function) on the modes and
their frequencies. For many realistic problems, the error in this
approximation is negligible. The derivation of perturbation theory
for Hermittian Eigen-problem is straightforward and is covered in
many texts on quantum mechanics [22, 23]. Suppose a Hermitian
operator Θ is altered by a small amount ∆Θ. The resulting
eigenvalues and eigenvectors of the perturbed operator can be written
as series expansions, in terms that depend on increasing powers of the
perturbation strength ∆Θ. The resulting equation can be solved order-
by-order using only the eigenmodes of the unperturbed operator. Now,
we briefly review this method according to our system. The Eq. (3)
for TM polarization and 2-D case is considered.

−
(

∂

∂x

1
ε (ρ)

∂

∂x
+

∂

∂y

1
ε (ρ)

∂

∂y

)
Hz (ρ) =

ω2

c2
Hz (ρ) ,

Θ(2)Hz (ρ) ≡ ω2

c2
Hz (ρ) ,

(7)
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where superscript (2) denotes the 2-D operator. Then, by substituting
Eq. (5) in this equation and assuming the in-plane propagation (kz =
0), the 2-D operator can be written as,

Θ(2)u(n,k||) (ρ) ≡ ω2

c2
u(n,k||) (ρ) ,

Θ(2) =−
(

1
ε(ρ)

(
∂2

∂x2
+

∂2

∂y2

)
+

∂

∂x

1
ε (ρ)

∂

∂x
+

∂

∂y

1
ε (ρ)

∂

∂y
− k2

||

)
,

(8)

where in this notation the subscript n and k|| denotes the band number
and corresponding k|| in the pseudo-Brillion zone. After that, Eq. (6)
is substituted into the 2-D eigenvalue problem given by Eq. (8). The
unperturbed Hermittian operator Θ̂(2) and the perturbation operator
∆Θ̂(2) are obtained as follows,(

Θ̂(2) + ∆Θ̂(2)
)

u′(n,k||) (ρ) ≡ Ω′(n,k||)u
′
(n,k||) (ρ) ,

Θ̂(2) ≡ −
(

1
n2

0

(
∂2

∂x2
+

∂2

∂y2

)
− k2

||

)
,

∆Θ̂(2) ≡ 2n0

N∑

i=1

ni cos (Gi.ρ)
(

∂2

∂x2
+

∂2

∂y2

)

+
∂

∂x

(
2n0

N∑

i=1

ni cos (Gi.ρ)

)
∂

∂x
+

∂

∂y

(
2n0

N∑

i=1

ni cos (Gi.ρ)

)
∂

∂y
,

(9)

where u′(n,k||)
(ρ) and Ω′(n,k||)

= ω2

c2
are the eigenvectors and

eigenfrequencies of the perturbed operator. They can be written as
series expansion,

u′(n,k||) (ρ) = u
(0)

(n,k||)
(ρ) + µu

(1)

(n,k||)
(ρ) ,

Ω′(n,k||) = Ω(0)

(n,k||)
+ µΩ(1)

(n,k||)
,

(10)

where the superscripts denote the order of eigenfrequencies and
eigenvectors corrections. Now, perturbed eigenfrequencies and
eigenvectors given by Eq. (10) is substituted into the Eq. (8). Then,
terms are collected and factorized order-by-order in µ. For the zeroth
order in µ (i.e., O (1)), the unperturbed system is considered, which
can be solved by different methods such as finite difference method and
eigenvectors and eigenvalues u

(0)
(n,k||)

(ρ), Ω(0)
(n,k||)

can be obtained. For
the first order, O (µ), is obtained as

Θ̂(2)u
(1)
(n,k||)

(ρ) + ∆Θ̂(2)u
(0)
(n,k||)

(ρ) = Ω(0)
(n,k||)

u
(1)
(n,k||)

(ρ) + Ω(1)
(n,k||)

u
(0)
(n,k||)

(ρ),
(11)
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when, Eq. (11) is multiplied by u
∗(0)
(n,k||)

(ρ) and is integrated over the

surface of crystal, Ω(1)
(n,k||)

is obtained.

Ω(1)

(n,k||)
=

∫∫
u
∗(0)

(n,k||)
(ρ)∆Θ̂(2)u

(0)

(n,k||)
(ρ) dρ

∫∫ ∣∣∣∣u
(0)

(n,k||)
(ρ)

∣∣∣∣
2

dρ

(12)

It can also be found the correction to the eigenvector by multiplying
Eq. (11) to another mode at a different band, m.

It must be noticed that if there are degeneracy in the
eigenfrequency of unperturbed system, that it means any two zeroth-
order eigenvectors had the same frequency; the perturbation theory
is no longer valid. In this case, the degenerate perturbation theory
can be used to identify the eigenfrequency of perturbed system. This
theory is covered in some text book [22, 23] and it is briefly reviewed
here. Let us assume that the zeroth-order solution of Maxwell equation
has g-fold degeneracy, which they can be written as u

(0)
(n,k||,m)(ρ). The

subscripts n and k|| represent the band number and the in-plane k-
vector, respectively. The subscript m represents which one of the g
degenerate states is being considered. The m value is between 1 to g.
Each of the states u

(0)
(n,k||,m)(ρ) is an eigenvector of Θ̂(2) with precisely

the same eigenfrequency Ω(1)
(n,k||)

. As we know, any linear combination
of the g degenerate eigenvectors is also an eigenvector.

u
(0)α

(n,k||)
(ρ) =

g∑

m=1

aα
mu

(0)α

(n,k||,m) (ρ) , (13)

where the coefficients are labeled as aα
m. The coefficients aα

m must
be chosen such that the terms in the first order correction to the
eigenvector vanish whenever the dominator is zero. The first order
correction to the eigenvector is given as

u
(1)

(n,k||)
(ρ)=

∑

m6=n

Mmn(
Ω(0)

(n,k||)
− Ω(0)

(m,kvert|)

)∫∫
u

(0)∗
(m,k||)

u
(0)

(m,k||)
dρ

u
(0)

(n,k||)
(ρ) ,

(14)
where Mmn is defined as

Mmn =
∫∫

u
∗(0)α

(m,k||)
(ρ) ∆Θ̂(2)u

(0)

(n,k||)
(ρ) dρ (15)

The new eigenvector u
(0)α
(m,k||)

(ρ) must be constructed such that Mmn

vanishes whenever Ω(1)
(n,k||)

= Ω(1)
(m,k||)

. Under this condition, no
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singularity occurs in the first-order correction to the eigenvectors. So,
the coefficients aα

m and Ω(1)
(n,k||)

are determined by solving the following
eigenvalue equation,

g∑

m=1

(
Mpm − Ω(1)

(n,k||)
δmp

)
aα

m = 0, (16)

where index p has values from 1 to g. The same approach can be
developed for TE polarization, too.

2.3. Band Gap Evaluation

The band structure of photonic quasicrystals can be obtained for TM
and TE polarization using semi-analytical method such as perturbation
theory investigated pervious subsection, particularly. The relative
photonic band gap between bands is defined as

Gap =
∆ω

ω0
=

min
k||∈P−BZ

:
{
ωh

(
k||

)}− max
k||∈P−BZ

:
{
ωl

(
k||

)}

min
k||∈P−BZ

:
{
ωh

(
k||

)}
+ max

k||∈P−BZ
:
{
ωl

(
k||

)} (17)

where the minima and maxima are taken over all k|| on the pseudo-
Brillouin zone (P-BZ), and ωl and ωh are bands just below and just
above the complete gap. Another parameter that one can be interested
in about band gap, is measuring isotropy of the photonic band gap. A
measure of isotropy for a photonic band gap can be defined as

I =
min

k||∈P−BZ
:
{
ωh

(
k||

)}− max
k||∈P−BZ

:
{
ωl

(
k||

)}

max
k||∈P−BZ

:
{
ωh

(
k||

)}− min
k||∈P−BZ

:
{
ωl

(
k||

)} (18)

It is clear from its definition that I ∈ [−1, 1]. When I is at its greatest,
the gap is perfectly isotropic and it is at its lowest in a homogeneous
material.

3. RESULTS AND DISCUSSIONS

In this paper, taking account of analytical results reported in pervious
section, the simulated band structure of hexagonal photonic crystal
based on perturbation theory is calculated and it has good agreement
with the simulated result that have been obtained by well-known
software such as Rsoft based on FDTD method. So, one can trust
this method and the results are calculated for photonic quasicrystals
are valid. According to this point, the simulated results of the
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band structure for special case 2-D 12-fold photonic quasicrystal are
demonstrated. The photonic quasicrystal is composed of 150-nm-
diameter rods arranged on a pitch of 260 nm and the refractive index
of rods material are chosen n = 2.45 (materials such as porous silicon
or TiO2 that are familiar as optical materials). The index of refraction
for 2-D photonic quasicrystal of considered structure described above
can be given by the following parameters and is shown in Fig. 1(a).
They are assumed that n0, ni, a, and N are chosen 1.48, 0.08, 260 nm
and 12 respectively.

As we mentioned before, the parameter ni should be much smaller
than n0 that it is satisfied by choosing these parameters. So, we can
use the perturbation theory results calculated in the previous section.
Reciprocal lattice for this structure can be obtained and it is illustrated
in Fig. 1(b). The first pseudo-Brillouin zone is indicated in Fig. 1(b)
as white dodecagon.

For evaluation band structure based on perturbation theory,
the band structure of unperturbed structure (empty lattice) must
be obtained by using zeroth order equation of perturbation method
and it is shown in Fig. 2(a) for corresponding k-vector in pseudo-
Brillouin zone. There are some points with high symmetry in the
unperurbed band structure which the eigenfrequency of unperturbed
operator is degenerated (i.e., they have different eigenvector with

Figure 1. (a) The refractive index of 2-D photonic quasicrystal is
composed of 150-nm-diameter rods arranged on a pitch of 260 nm
and the refractive index of rods material are chosen n = 2.45. (b)
Corresponding reciprocal lattice, the first pseudo-Brillouin zone is
indicated as white dodecagon.
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equal eigenfrequency). The correction of eigenfrequency of perturbed
operator in these cases can be obtained using degenerate perturbation
theory. In other points of unperturbed band structure that there is
not degeneracy, correction of eigenfrequency can be calculated using
Eq. (12) described in the previous section. Now, the band structure
of 2-D 12-fold photonic quasicrystal calculated by using perturbation
method for both TM and TE polarization is illustrated in Fig. 2. As
mentioned before, the relative photonic band gap and isotropy of band
gap can be calculated using Eqs. (17) and (18), respectively. The
results for this structure are summarized in Table 1.

The band structure of 2-D 8-fold photonic quasicrystal can be
obtained using this method in a same way. However, the pseudo-
Brillouin zone for this case will be an octagonal. 4-fold and 6-fold
(hexagonal) photonic crystals are modeled by this method, so the
band structure of these structures is investigated using semi-analytical
method.

Table 1. Band structure evaluation of considered 2-D 12-fold photonic
quasicrystal.

%Gap = ∆ω
ω0

I (isotropy)
17. 9132 0.470003

Figure 2. Band structure of considered 2-D 12-fold photonic
quasicrystal for TM (blue line marked empty circle) and TE (red line
marked solid circle) polarization.
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As it was mentioned in introduction, one of the most important
features of photonic quasicrystals is a more isotropic complete band
gap in a low dielectric contrast due to their high level of rotational
symmetry. It is promising for application in a range of optical devices.
In this direction, the band structure of 12-fold and 8-fold photonic
quasicrystals and also 4-fold and 6-fold photonic crystals are obtained
using perturbation theory as mentioned previously for various dielectric
contrasts. After that, band gaps for each case over the contrast range
1.44–5.76 where the perturbation theory is valid are plotted in Fig. 3.

As shown in Fig. 3, stop gaps increase with dielectric contrast
ratio for every n-fold structures. It is clear in this figure that the
higher symmetry structures have greater gaps at low contrast. The
photonic quasicrystals have gaps that are more isotropic than those
of the crystals for all contrasts due to the fact that their pseudo-
Brillouin zones are more circular than the Brillouin zones of crystals.
For example, the Brillouin zone for 6-fold symmetry is a hexagon and
the pseudo- Brillouin zone for 12-fold is dodecagon.

Isotropy is plotted against dielectric contrast for all rotational
symmetries in Fig. 4. The photonic quasicrystals all have higher
isotropic than the crystals and I increases as the pseudo-Brillouin zone
becomes more circular. The isotropy of 12-fold photonic quasicrystal
is the highest.

Figure 3. Band gaps of structures for rotational symmetries n = 4,
6, 8 and 12 as a function of the dielectric contrast of the rods and
background materials.
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Figure 4. The degree of isotropy of structures for rotational
symmetries n = 4, 6, 8 and 12 as a function of the dielectric contrast
of the rods and background materials.

In this section, simulation results for illustration of the band
structure for quasicrystals were demonstrated. In these figures quality
of quasicrystals investigated and shown that quasicrystals are easy to
work from band gap opening at low contrast points of view.

4. CONCLUSION

As conclusion, it should be pointed out that pseudo-Brillouin zone
was defined for evaluation of the band structure for quasicrystals and
consequently the Bloch theory was applied to quasicrystals. Then, we
have calculated the band structure of 2-D 12-fold and 8-fold photonic
quasicrystal by using perturbation method. It was shown that using
first order perturbation theory band structure (eigenfrequencies) can
be obtained. As we know, in quasicrystals complete band gap can
be observed in low dielectric contrasts, so developing perturbation
theory based band solver is interesting. Also, we used degenerate
perturbation theory for points with high symmetry to extract precision
band structure. The proposed method is semi-analytic and presents
a conceptual view for applied designer and numerical errors which
are conventional in popular methods are strongly reduced. Finally,
it is shown that high symmetry photonic quasicrystals have greater
and more isotropic photonic band gap in low dielectric contrast in
comparison with photonic crystals.
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