Vol. 12
Latest Volume
All Volumes
PIERL 123 [2025] PIERL 122 [2024] PIERL 121 [2024] PIERL 120 [2024] PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2009-10-16
Experiment and Simulation on Te10 Cut-off Reflection Phase in Gentle Rectangular Downtapers
By
Progress In Electromagnetics Research Letters, Vol. 12, 79-85, 2009
Abstract
The phase of the reflection coefficient of a TE10 rectangular waveguide mode at the cut-off point in a gentle downtaper is investigated through both experiment and computer simulation. The result shows a very good agreement with the theoretical prediction based on the work by Katsenelenbaum et al., that is, a +90° phase shift occurs at the cut-off point for TE modes if the cut-off point is not too close to the end of the downtaper. An application for the determination of the resonant frequencies for the spurious trapped TE30 mode in an uptaper-downtaper oversized resonant structure is presented.
Citation
Henry Soekmadji, Shaolin Liao, and Ronald Vernon, "Experiment and Simulation on Te10 Cut-off Reflection Phase in Gentle Rectangular Downtapers," Progress In Electromagnetics Research Letters, Vol. 12, 79-85, 2009.
doi:10.2528/PIERL09090707
References

1. Edgcombe, C. J., Gyrotron Oscillators --- Their Principles and Practice, Taylor and Francis, 1993.

2. Gold, S. H. and G. S. Nusinovich, "Review of high-power microwave source research," Rev. Sci. Instrum., Vol. 68, No. 11, American Institute of Physics, Nov. 1997.

3. Nusinovich, G. S., A. N. Vlasov, and T. M. Antonsen Jr., "Nonstationary phenomena in tapered gyro-backward-wave oscillators," Physical Review Letters, Vol. 87, No. 21, Dec. 19, 2001.

4. Spassovsky, I., E. S. Gouveia, S. G. Tantawi, B. P. Hogan, W. Lawson, and V. L. Granatstein, "Design and cold testing of a compact TE01 to TE20 mode converter," IEEE Transactions on Plasma Science, Vol. 30, No. 3, 787-793, Jun. 2003.
doi:10.1109/TPS.2002.801498

5. Pohl, D. W., W. Denk, and M. Lanz, "Optical stethoscopy: Image recording with resolution λ/20," Applied Physics Letter, Vol. 44, 651, 1984.
doi:10.1063/1.94865

6. Knoll, B., A. Kramer, and R. Guckenberger, "Contrast of microwave near-field microscopy," Applied Physics Letter, Vol. 70, 2667, 1997.
doi:10.1063/1.119255

7. Matsumaru, K., "Reflection coefficient of E-plane tapered waveguides," IRE Transactions on Microwave Theory and Techniques, Vol. 6, No. 2, 143-149, Apr. 1958.
doi:10.1109/TMTT.1958.1124529

8. Johnson, R. C., "Design of linear double tapers in rectangular waveguides," IRE Transactions on Microwave Theory and Techniques, Vol. 7, 374-378, Jul. 1959.

9. Knoll, B. and F. Keilmann, "Electromagnetic fields in the cutoff regime of tapered metallic waveguides," Optics Communications, Vol. 162, No. 4-6, 177-181, Apr. 15, 1999.

10. Katsenelenbaum, B. Z., L. Mercader Del Rio, M. Pereyaslavets, M. S. Ayza, and M. Thumm, "Theory of nonuniform waveguides, the cross-section method," IEE Electromagnetic Waves, London, UK, 1998.

11. Xu, C. and L. Zhou, "Microwave open resonators in gyrotrons," Infrared and Millimeter Waves, Vol. 10, 311-359, Academic Press, 1983.