Vol. 97
Latest Volume
All Volumes
PIER 180 [2024] PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2009-10-20
Target Tracking with Line-of-Sight Identification in Sensor Networks Under Unknown Measurement Noises
By
Progress In Electromagnetics Research, Vol. 97, 373-389, 2009
Abstract
Tracking a target is a fundamental and crucial problem in wireless sensor networks. It is well known that non-line-of-sight (NLOS) propagation will significantly degrade the tracking accuracy if its effects are ignored. In this paper, a line-of-sight (LOS) identification approach for range-based tracking systems is developed to discard the NLOS measurements. Based on Lp-norm LOS identification strategy, a novel target tracking method is devised with the use of cost-reference particle filter, which does not require the knowledge of the measurement noise distribution. Computer simulations are included to verify the effectiveness of the proposed approach under different noise distributions.
Citation
Hong-Qing Liu, and Hing-Cheung So, "Target Tracking with Line-of-Sight Identification in Sensor Networks Under Unknown Measurement Noises," Progress In Electromagnetics Research, Vol. 97, 373-389, 2009.
doi:10.2528/PIER09090701
References

1. Patwari, N., J. N. Ash, S. Kyperountas, A. O. Hero III, R. L. Moses, and N. S. Correal, "Locating the nodes --- Cooperative localization in wireless sensor networks," IEEE Signal Processing Magazine, Vol. 22, No. 4, 54-69, Jul. 2005.
doi:10.1109/MSP.2005.1458287

2. Guo, D. and X. Wang, "Dynamic sensor collaboration via sequential Monte Carlo," IEEE Journal on Selected Areas in Communications, Vol. 22, No. 6, 1037-1047, Aug. 2004.
doi:10.1109/JSAC.2004.830897

3. Cong, L. and W. Zhuang, "Non-line-of-sight error mitigation in mobile location," IEEE Trans. on Wireless Communications, Vol. 4, No. 2, 560-573, Mar. 2005.
doi:10.1109/TWC.2004.843040

4. Gezici, S., H. Kobayashi, and H. V. Poor, "Non parametric nonline of sight identification," Proc. IEEE 58th Veh. Technol. Conf., Vol. 4, No. 6-9, 2544-2548, Oct. 2003.

5. Wylie, M. P. and J. Holtzman, "The non-line of sight problem in mobile location estimation," Proc. IEEE Int. Conf. Universal Personal Commun., Vol. 2, No. 29, 827-831, Oct. 1996.

6. Ristic, B., A. Arulampalam, and N. Gordon, Beyond the Kalman Filter-particle Filters for Tracking Applications,, Artech House, 2004.

7. Arulampalam, M. S., S. Maskell, N. Gordon, and T. Clapp, "A tutorial on particle filters for online nonlinear/non-Gaussian Bayesian tracking," IEEE Trans. on Singal Processing, Vol. 50, No. 2, 174-188, Feb. 2002.
doi:10.1109/78.978374

8. Miguez, J., M. F. Bugallo, and P. M. Djuric, "A new class of particle ¯lters for random dynamical systems with unknown statistics," EURASIP Journal on Applied Signal Processing, Vol. 2004, No. 15, 2278-2294, 2004.
doi:10.1155/S1110865704406039

9. Lu, T., M. F. Bugallo, and P. M. Djurie, "RLS-assisted cost reference particle filtering," Proc. ICASSP-08, 3421-3424, Las Vegas, USA, Mar. 2008.

10. Vander Merwe unscented particle filter, R., A. Doucet, N. De Freitas, and E. Wan, The unscented particle filter, Technical Report, Cambridge University Engineering Department, Dec. 2000.

11. Chen, L. and L. Wu, "Mobile localization with NLOS mitigation using improved Rao-Blackwellized particle ¯ltering algorithm," Proc. 13th IEEE Int. Symposium on Consumer Electronics, 174-178, Kyoto, Japan, May 2009.

12. Caffery, J. J., Wireless location in CDMA Cellular Radio Systems, Kluwer Academic, 2000.

13. Pitas, I. and A. N. Venetsanopoulos, Nonlinear Digital Filters: Principles and Applications, Kluwer Academic Publishers, 1990.

14. Kay, S. M., Fundamentals of Statistical Signal Processing: Estimation Theory, Prentice Hall.

15. Rice, J. A., Mathematical Statistics and Data Analysis, , 2nd Ed., Duxbury Press, 1995.

16. Bhatia, V. and B. Mulgrew, "Non-parametric likelihood based channel estimator for Gaussian mixture noise," Signal Processing, Vol. 87, No. 11, 2569-2586, Nov. 2007.
doi:10.1016/j.sigpro.2007.04.006

17. Stein, D. W. J., "Detection of random signals in Gaussian mixture noise," IEEE Trans. on Pattern Analysis and Machine Intelligence, Vol. 41, No. 6, 1788-1801, Nov. 1995.

18. Nikias, C. L. and M. Shao, Signal Processing with Alpha-stable Distributions and Applications, A Wiley-Interscience, 1995.

19. Kuruoglu, E. E., Signal Pprocessing in α-Stable Noise Environments: A Least lp-Norm Approach, Ph.D. dissertation, Nov. 1998.

20. Weron, R., "On the Chambers-Mallows-Stuck method for simulating skewed stable random variables," Statistics & Probability Letters, Vol. 28, No. 2, 165-171, Jun. 1996.
doi:10.1016/0167-7152(95)00113-1

21. Liu, H. Q., H. C. So, K. W. K. Lui, and F. K. W. Chan, "Sensor selection for target tracking in sensor networks," Progress In Electromagnetics Research, Vol. 95, 267-282, 2009.
doi:10.2528/PIER09070802

22. Chen, J. F., Z. G. Shi, S. H. Hong, and K. S. Chen, "Grey prediction based particle filter for maneuvering target tracking," Progress In Electromagnetics Research, Vol. 93, 237-254, 2009.
doi:10.2528/PIER09042204

23. Khodier, M. M. and M. Al-Aqeel, "Linear and circular array optimization: A study using particle swarm intelligence," Progress In Electromagnetics Research B, Vol. 15, 347-373, 2009.
doi:10.2528/PIERB09033101

24. Lim, T. S., V. C. Koo, H.-T. Ewe, and H.-T. Chuah, "A SAR autofocus algorithm based on particle swarm optimization," Progress In Electromagnetics Research B, Vol. 1, 159-176, 2008.
doi:10.2528/PIERB07102501

25. Liu, T. H. and J. M. Mendel, "A subspace-based direction finding algorithm using fractional lower order statistics," IEEE Trans. on Singal Processing, Vol. 49, No. 8, 1605-1613, Aug. 2001.
doi:10.1109/78.934131

26. Figueiredo, M. A. T. and A. K. Jain, "Unsupervised learning of finite mixture models," IEEE Trans. on Pattern Analysis and Machine Intelligence, Vol. 24, No. 3, 381-396, Mar. 2002.
doi:10.1109/34.990138