Vol. 96
Latest Volume
All Volumes
PIER 180 [2024] PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2009-09-26
Characterization of the Validity Region of the Extended T-Matrix Method for Scattering from Dielectric Cylinders with Finite Length
By
Progress In Electromagnetics Research, Vol. 96, 309-328, 2009
Abstract
The T-matrix approach is effective in analyzing electromagnetic scattering from finite scatterers. Yet for scatterers with extreme geometry, this approach may fail. One example is its inability to analyze scattering from dielectric cylinders with large aspect ratios. To deal with such difficulty, recently we proposed a method based on an extension of the T-matrix approach, where a long cylinder is hypothetically divided into a cluster of identical sub-cylinders, for each the T matrix can be numerically stably calculated. Special care was paid to fulfill the boundary conditions at the hypothetic surface of any two neighboring sub-cylinders. The resultant coupled equations are different from that of multi-scatterer theory. The model results were in good agreement with experiment data available in the literature. However, the validity region of the proposed method was not fully characterized. Now we have developed and validated a method of moment (MoM) code, and are in a position to carry on the task of characterizing the validity region. The proposed method is found to be applicable to dielectric cylinders of arbitrary length as long as the T matrix is attainable for the elementary sub-cylinder. The conditions for the T matrix to be numerically stably calculated in terms of the equivalent volumetric radius and relative dielectric constant are also empirically obtained.
Citation
Wen-Zhe Yan, Yang Du, Zengyuan Li, Er-Xue Chen, and Jian-Cheng Shi, "Characterization of the Validity Region of the Extended T-Matrix Method for Scattering from Dielectric Cylinders with Finite Length," Progress In Electromagnetics Research, Vol. 96, 309-328, 2009.
doi:10.2528/PIER09083101
References

1. Ulaby, F. T., K. Sarabandi, K. McDonald, M. Whitt, and M. C. Dobson, "Michigan microwave canopy scattering model," Int. J. Remote Sensing, Vol. 38, No. 7, 2097-2128, 2000.

2. Yueh, S. H., J. A. Kong, J. K. Jao, R. T. Shin, and T. L. Toan, "Branching model for vegetation," IEEE Trans. Geosci. Remote Sensing, Vol. 30, 390-402, 1992.
doi:10.1109/36.134088

3. Chiu, T. and K. Sarabandi, "Electromagnetic scattering from short branching vegetation," IEEE Trans. Geosci. Remote Sensing, Vol. 38, No. 2, 911-925, 2000.
doi:10.1109/36.841974

4. Du, Y., Y. Luo, W. Z. Yan, and J. A. Kong, "An electromagnetic scattering model for soybean canopy," Progress In Electromagnetics Research, Vol. 79, 209-223, 2008.
doi:10.2528/PIER07101603

5. Ahmed, S. and Q. A. Naqvi, "Electromagnetic scattering from parallel perfect electromagnetic conductor cylinders of circular cross-sections using an iterative procedure," Journal of Electromagnetic Waves and Applications, Vol. 22, No. 7, 987-1003, 2008.
doi:10.1163/156939308784150209

6. Illahi, A., M. Afzaal, and Q. A. Naqvi, "Scattering of dipole field by a perfect electromagnetic conductor cylinder," Progress In Electromagnetics Research Letters, Vol. 4, 43-53, 2008.
doi:10.2528/PIERL08051601

7. Mishra, M. and N. Gupta, "Application of quasi Monte Carlo integration technique in EM scattering from finite cylinders," Progress In Electromagnetics Research Letters, Vol. 9, 109-118, 2009.
doi:10.2528/PIERL09050806

8. Valagiannopoulos, C. A., "Arbitrary currents on circular cylinder with inhomogeneous cladding and RCS optimization," Journal of Electromagnetic Waves and Applications, Vol. 21, No. 5, 665-680, 2007.
doi:10.1163/156939307780667337

9. Karam, M. A. and A. K. Fung, "Electromagnetic wave scattering from some vegetation samples," IEEE Trans. Geosci. Remote Sensing, Vol. 26, 799-808, 1988.
doi:10.1109/36.7711

10. Karam, M. A. and A. K. Fung, "Electromagnetic wave scattering from some vegetation samples," Int. J. Remote Sensing, Vol. 9, 1109-1134, 1988.
doi:10.1080/01431168808954918

11. Waterman, P. C., "Matrix formulation of electromagnetic scattering," Proc. IEEE, Vol. 53, 805-811, 1956.

12. Mishchenko, M. I., L. D. Travis, and A. A. Lacis, Scattering, Absorption, and Emission of Light by Small Particles, Cambridge U. Press, 1985.

13. Mishchenko, M. I. and L. D. Travis, "T-matrix computations of light scattering by large spheroidal particles," Opt. Commun., Vol. 109, 16-21, 1994.
doi:10.1016/0030-4018(94)90731-5

14. Mishchenko, M. I., L. D. Travis, and A. Macke, "Scattering of light by polydisperse, randomly oriented, finite circular cylinders," Appl. Opt., Vol. 35, 4927-4940, 1996.
doi:10.1364/AO.35.004927

15. Mishchenko, M. I., L. D. Travis, and D. W. Mackowski, "T-matrix computations of light scattering by nonspherical particles: A review," J. Quant. Spectrosc. Radiat. Transfer, Vol. 55, 535-575, 1996.
doi:10.1016/0022-4073(96)00002-7

16. Wielaard, D. J., M. I. Mishchenko, A. Macke, and B. E. Carlson, "Improved T-matrix computations for large, nonabsorbing and weakly absorbing nonspherical particles and comparison with geometrical optics approximation," Appl. Opt., Vol. 36, 4305-4313, 1997.
doi:10.1364/AO.36.004305

17. Mishchenko, M. I., "Calculation of the amplitude matrix for a nonspherical particle in a fixed orientation," Appl. Opt., Vol. 39, 1026-1031, 2000.
doi:10.1364/AO.39.001026

18. Barber, P. W., "Resonance electromagnetic absorption by non-spherical dielectric objects," IEEE Trans. Microwave Theory Tech., Vol. 25, 373-371, 1954.
doi:10.1109/TMTT.1977.1129106

19. Yan, W.-Z., Y. Du, H. Wu, D. Liu, and B.-I. Wu, "EM scattering from a long dielectric circular cylinder," Progress In Electromagnetics Research, Vol. 85, 39-67, 2008.
doi:10.2528/PIER08081106

20. Umashankar, K., A. Taflove, and S. M. Rao, "Electromagnetic scattering by arbitrary shaped three-dimensional homogeneous lossy dielectric objcts," IEEE Trans. Antennas Propagat., Vol. 34, 758-766, 1986.
doi:10.1109/TAP.1986.1143894

21. Rao, S. M., D. R. Wilton, and A. W. Glisson, "Electromagnetic scattering by surfaces of arbitrary shape," IEEE Trans. Antennas Propagat., Vol. 30, 409-418, 1982.
doi:10.1109/TAP.1982.1142818

22. Wang, L. F., J. A. Kong, K. H. Ding, T. Le Toan, F. Ribbes, and N. Floury, "Electromagnetic scattering model for rice canopy based on Monte Carlo simulation," Progress In Electromagnetics Research, Vol. 52, 153-171, 2005.
doi:10.2528/PIER04080601

23. Arslan, A. N., J. Pulliainen, and M. Hallikainen, "Observations of L-and C-band backscatter and a semi-empirical backscattering model approach from a forest-snow-ground system," Progress In Electromagnetics Research, Vol. 56, 263-281, 2006.
doi:10.2528/PIER05062701

24. Stein, S., "Addition theorems for spherical ware functions," Q. Appl. Math., Vol. 19, 15-24, 1961.

25. Tsang, L., J. A. Kong, and R. T. Shin, Theory of Microwave Remote Sensing, Wiley Interscience, 1985.

26. Xu, Y. L., "Electromagnetic scattering by an aggregate of spheres," Appl. Opt., Vol. 34, 4573-4588, 1995.
doi:10.1364/AO.34.004573

27. Mishchenko, M. I., "Light scattering by size-shape distributions of randomly oriented axially symmetric particles of size comparable to a wavelength," Appl. Opt., Vol. 32, 4652-4666, 1993.
doi:10.1364/AO.32.004652

28. Kong, J. A., Electromagnetic Wave Theory, EMW Publishing, 2005.