Vol. 96
Latest Volume
All Volumes
PIER 180 [2024] PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2009-09-18
Fast Capacitance Extraction for Finite Planar Periodic Structures Using the Generalized Forward-Backward and Novel Spectral Acceleration Method
By
Progress In Electromagnetics Research, Vol. 96, 251-266, 2009
Abstract
The generalized forward-backward and novel spectral acceleration (GFB/NSA) method is applied to capacitance extraction problems of finite planar periodic structures. In the GFB method, the interaction within a unit cell can be calculated and stored beforehand. The interactions between relatively far-separated unit cells are however calculated by the GFB/NSA method to further accelerate the calculation speed. The contributions to a receiving element on finite planar periodic structures are separated into weak and strong source contributions by an appropriate separation index, which is conveniently specified by an amount of unit cells rather than a distance. The strong source contribution is performed by the standard matrix-vector multiplication in the GFB method, while the weak source contribution is computed using the NSA algorithm. Numerical examples show comparisons of the GFB/NSA method with a commercial software, including the efficiency of the method. With the array increment in one direction, the GFB/NSA method shows O(N) in the calculation time per iteration, while its memory requirement for a very large problem also tends to be O(N), where N is the number of unknowns.
Citation
Chatrpol Lertsirimit, and Danai Torrungrueng, "Fast Capacitance Extraction for Finite Planar Periodic Structures Using the Generalized Forward-Backward and Novel Spectral Acceleration Method," Progress In Electromagnetics Research, Vol. 96, 251-266, 2009.
doi:10.2528/PIER09081004
References

1. Itoh, T., R. Mittra, and R. D. Ward, "A method for computing edge capacitance of finite and semi-infinite microstrip lines," IEEE Trans. Microwave Theory Tech., Vol. 20, 847-849, 1972.
doi:10.1109/TMTT.1972.1127896

2. Shu, W. and S. Xu, "Capacitance extraction for multiconductor transmission lines in multilayered dielectric media using the numerical Green's function," Microwave and Optical Technology Letters, Vol. 40, 529-531, 2004.
doi:10.1002/mop.20024

3. Nabors, K. and J. White, "FastCap: A multipole accelerated 3-D capacitance extraction program," IEEE Trans. Computer-aided Design of Integrated Circuits and Systems, Vol. 10, 1447-1459, 1991.
doi:10.1109/43.97624

4. Nabors, K. and J. White, "Multipole-accelerated capacitance extraction algorithms for 3-D structures with multiple dielectrics," IEEE Trans. Circuits Syst., Vol. 39, 946-954, 1992.
doi:10.1109/81.199892

5. Jandhyala, V., E. Michielssen, and R. Mittra, "Multipole-accelerated capacitance computation for 3-D structures in a strati¯ed dielectric medium using a closed-form Green's function," Int. J. Microwave Millimeter-wave Computer-aided Eng., Vol. 5, 68-78, 1995.
doi:10.1002/mmce.4570050205

6. Phillips, J. R. and J. K. White, "A precorrected-FFT method for electrostatic analysis of complicated 3-D structures," IEEE Trans. Computer-aided Design of Integrated Circuits and Systems, Vol. 16, 1059-1072, 1997.
doi:10.1109/43.662670

7. Zhu, Z., H. Ji, and W. Hong, "An efficient algorithm for the parameter extraction of 3-D interconnect structures in the VLSI circuits: Domain decomposition method," IEEE Trans. Microwave Theory Tech., Vol. 45, 1179-1184, 1997.
doi:10.1109/22.618405

8. Pan, Y. C., W. C. Chew, and L. X. Wan, "A fast mutipole-method-based calculation of the capacitance matrix for multiple conductors above stratified dielectric media," IEEE Trans. Microwave Theory Tech., Vol. 49, 480-490, 2001.
doi:10.1109/22.910552

9. Wang, C. F., L. W. Li, B. L. Ooi, P. S. Kooi, and M. S. Leong, "Fast capacitance computation based on adaptive integral solution of second-kind integral equation," Journal of Electromagnetic Waves and Applications, Vol. 16, No. 5, 711-728, 2002.
doi:10.1163/156939302X01137

10. Yu, W. and Z. Wang, "Fast capacitance extraction of actual 3-D VLSI interconnects using quasi-multiple medium accelerated BEM," IEEE Trans. Microwave Theory Tech., Vol. 51, 109-119, 2003.

11. Gope, D. and V. Jandhyala, "PILOT: A fast algorithm for enhanced 3D parasitic capacitance extraction efficiency," Microwave and Optical Technology Letters, Vol. 41, 169-173, 2004.
doi:10.1002/mop.20083

12. Sae-Heng, C. and D. Torrungrueng, "An application of the forward-backward (FB) method for capacitance extraction problems of planar structures," Proceeding of IEEE TENCON 2004, Vol. 4, 332-335, 2004.
doi:10.1109/TENCON.2004.1414937

13. Sae-Heng, C. and D. Torrungrueng, "Fast capacitance extraction for planar structures in free space using the novel spectral acceleration algorithm," Proc. of the 2005 Asia-Pacific Microwave Conference, Vol. 3, 1-4, 2005.

14. Lertsirimit, C. and D. Torrungrueng, "Fast capacitance extraction for planar structures in a layer medium using the novel spectral acceleration algorithm," IEEE AP-S Intl. Symp. Digest, San Diego, CA, July 2008.

15. Chou, H. T. and J. T. Johnson, "Formulation of forward-backward method using novel spectral acceleration for the modeling of scattering from impedance rough surfaces," IEEE Trans. Geosc. Remote Sens., Vol. 38, 605-607, 2000.
doi:10.1109/36.823954

16. Torrungrueng, D., H. T. Chou, and J. T. Johnson, "A novel acceleration algorithm for the computation of scattering from two-dimensional large-scale perfectly conducting random rough surfaces with the forward-backward method," IEEE Trans. Geosc. Remote Sens., Vol. 38, 1656-1668, 2000.
doi:10.1109/36.851965

17. Moss, C. D., T. M. Grzegorczyk, H. C. Han, and J. A. Kong, "Forward-backward method with spectral acceleration for scattering from layered rough surfaces," IEEE Trans. Antennas and Propagation, Vol. 54, 1006-1016, 2006.
doi:10.1109/TAP.2006.869921

18., Pino, M. R., L. Landesa, J. L. Rodriguez, F. Obelleiro, and R. J. Burkholder, "The generalized forward-backward method for analyzing the scattering from targets on ocean-like rough surfaces," IEEE Trans. Antennas and Propagation, Vol. 47, 961-969, 1999.

19. Pino, M. R., R. J. Burkholder, and F. Obelleiro, "Spectral acceleration of the generalized forward-backward method," IEEE Trans. Antennas and Propagation, Vol. 50, 785-797, 2002.
doi:10.1109/TAP.2002.1017658

20. Lertsirimit, C. and D. Torrungrueng, "Fast capacitance extraction for finite planar periodic structures using the generalized forward-backward method," IEEE AP-S Intl. Symp. Digest, Charleston, SC, June 2009.

21. Harrington, R. F., Field Computation by Moment Methods, Wiley IEEE Press, 1993.

22. Nikloic, M. M., A. R. Djordevic, and M. M. Nikloic, ES3D: Electrostatic Field Solver for Multilayer Circuits, Artech House, 2007.