Vol. 17
Latest Volume
All Volumes
PIERB 109 [2024] PIERB 108 [2024] PIERB 107 [2024] PIERB 106 [2024] PIERB 105 [2024] PIERB 104 [2024] PIERB 103 [2023] PIERB 102 [2023] PIERB 101 [2023] PIERB 100 [2023] PIERB 99 [2023] PIERB 98 [2023] PIERB 97 [2022] PIERB 96 [2022] PIERB 95 [2022] PIERB 94 [2021] PIERB 93 [2021] PIERB 92 [2021] PIERB 91 [2021] PIERB 90 [2021] PIERB 89 [2020] PIERB 88 [2020] PIERB 87 [2020] PIERB 86 [2020] PIERB 85 [2019] PIERB 84 [2019] PIERB 83 [2019] PIERB 82 [2018] PIERB 81 [2018] PIERB 80 [2018] PIERB 79 [2017] PIERB 78 [2017] PIERB 77 [2017] PIERB 76 [2017] PIERB 75 [2017] PIERB 74 [2017] PIERB 73 [2017] PIERB 72 [2017] PIERB 71 [2016] PIERB 70 [2016] PIERB 69 [2016] PIERB 68 [2016] PIERB 67 [2016] PIERB 66 [2016] PIERB 65 [2016] PIERB 64 [2015] PIERB 63 [2015] PIERB 62 [2015] PIERB 61 [2014] PIERB 60 [2014] PIERB 59 [2014] PIERB 58 [2014] PIERB 57 [2014] PIERB 56 [2013] PIERB 55 [2013] PIERB 54 [2013] PIERB 53 [2013] PIERB 52 [2013] PIERB 51 [2013] PIERB 50 [2013] PIERB 49 [2013] PIERB 48 [2013] PIERB 47 [2013] PIERB 46 [2013] PIERB 45 [2012] PIERB 44 [2012] PIERB 43 [2012] PIERB 42 [2012] PIERB 41 [2012] PIERB 40 [2012] PIERB 39 [2012] PIERB 38 [2012] PIERB 37 [2012] PIERB 36 [2012] PIERB 35 [2011] PIERB 34 [2011] PIERB 33 [2011] PIERB 32 [2011] PIERB 31 [2011] PIERB 30 [2011] PIERB 29 [2011] PIERB 28 [2011] PIERB 27 [2011] PIERB 26 [2010] PIERB 25 [2010] PIERB 24 [2010] PIERB 23 [2010] PIERB 22 [2010] PIERB 21 [2010] PIERB 20 [2010] PIERB 19 [2010] PIERB 18 [2009] PIERB 17 [2009] PIERB 16 [2009] PIERB 15 [2009] PIERB 14 [2009] PIERB 13 [2009] PIERB 12 [2009] PIERB 11 [2009] PIERB 10 [2008] PIERB 9 [2008] PIERB 8 [2008] PIERB 7 [2008] PIERB 6 [2008] PIERB 5 [2008] PIERB 4 [2008] PIERB 3 [2008] PIERB 2 [2008] PIERB 1 [2008]
2009-09-11
Efficient Implementation of Higher-Order Finite Volume Time-Domain Method for Electrically Large Scatterers
By
Progress In Electromagnetics Research B, Vol. 17, 233-254, 2009
Abstract
The Finite Volume Time-Domain (FVTD) method finds limited application in the simulation of electromagnetic scattering from electrically large scatterers because of the fine discretization required in terms of points-per-wavelength. An efficient implementation of a higher-order FVTD method is proposed for electrically large, perfectly conducting scatterers. Higher-order and fine-grid accuracy are preserved, despite using only a first-order spatial accuracy and a coarse grid in substantial parts of the FVTD computational domain, by partially incorporating a time-domain Physical Optics (PO) approximation for the surface current. This can result in considerable savings in computational time while analyzing geometries containing electrically large, smooth sections using the FVTD method. The higher-order FVTD method in the present work is based on an Essentially Non-Oscillatory (ENO) reconstruction and results are presented for two-dimensional perfectly conducting scatterers subject to Transverse Magnetic (TM) or Transverse Electric (TE) illumination.
Citation
Avijit Chatterjee, and R. S. Myong, "Efficient Implementation of Higher-Order Finite Volume Time-Domain Method for Electrically Large Scatterers," Progress In Electromagnetics Research B, Vol. 17, 233-254, 2009.
doi:10.2528/PIERB09073102
References

1. Shankar, V., W. F. Hall, and A. H. Mohammadian, "A time-domain differential solver for electromagnetic scattering problems," Proceedings of the IEEE, Vol. 77, No. 5, 709-721, May 1989.
doi:10.1109/5.32061

2. Shankar, V., A gigaflop performance algorithm for solving Maxwell's equations of electromagnetics, 91-1578 AIAA Paper, June 1991.

3. Shang, J. S., "Characteristic-based algorithms for solving the Maxwell equations in the time domain," IEEE Antennas and Propagation Magazine, Vol. 37, No. 3, 15-25, 1995.
doi:10.1109/74.388807

4. Yee, K. S. and J. S. Chen, "The finite-difference time domain (FDTD) and ¯nite-volume time-domain (FVTD) methods in solving Maxwell's equations," IEEE Transactions on Antennas and Propagation, Vol. 45, No. 3, 354-363, 1997.
doi:10.1109/8.558651

5. Chatterjee, A. and A. Shrimal, "Essentially nonoscillatory finite volume scheme for electromagnetic scattering by thin dielectric coatings," AIAA Journal, Vol. 42, No. 2, 361-365, 2004.
doi:10.2514/1.553

6. Bhattacharya, A. and A. Chatterjee, "Finite volume time-domain computations for electromagnetic scattering from intake configurations," Journal of Aircraft, Vol. 42, No. 2, 572-573, 2005.
doi:10.2514/1.11278

7. Georgakopoulos, S. V., C. R. Britcher, C. A. Balanis, and R. A. Renaut, "Higher-order finite-difference schemes for electromagnetic radiation, scattering, and penetration, Part I: Theory," IEEE Antennas and Propagation Magazine, Vol. 44, No. 1, 134-142, 2002.
doi:10.1109/74.997945

8. Wang, S. and F. L. Teixeira, "Grid-dispersion error reduction for broadband FDTD electromagnetic simulations," IEEE Transactions on Magnetics, Vol. 40, No. 2, 1440-1443, 2004.
doi:10.1109/TMAG.2004.824904

9. Okoniewski, M., E. Okoniewska, and M. A. Stuchly, "Three-dimensional subgridding algorithm for FDTD," IEEE Transactions on Antennas and Propagation, Vol. 45, No. 3, 422-428, 1997.
doi:10.1109/8.558657

10. Djordjevic, M. and B. M. Notaros, "Higher order hybrid method of moments-physical optics modeling technique for radiation and scattering from large perfectly conducting surfaces," IEEE Transactions on Antennas and Propagation, Vol. 53, No. 2, 800-813, 2005.
doi:10.1109/TAP.2004.841318

11. Abdel Moneum, M. A., X. Shen, J. L. Volakis, and O. Graham, "Hybrid PO-MOM analysis of large axi-symmetric radomes," IEEE Transactions on Antennas and Propagation, Vol. 49, No. 12, 1657-1666, 2001.
doi:10.1109/8.982444

12. Yangi, L.-X., D.-B. Ge, and B. Wei, "FDTD/TDPO hybrid approach for analysis of the EM scattering of combinative objects," Progress In Electromagnetics Research, Vol. 76, 275-284, 2007.
doi:10.2528/PIER07071206

13. Chou, H.-T. and H.-T. Hsu, "Hybridization of simulation codes based on numerical high and low frequency techniques for the e±cient antenna design in the presence of electrically large and complex structures," Progress In Electromagnetics Research, Vol. 78, 173-187, 2008.
doi:10.2528/PIER07091104

14. Fumeaux, C., D. Baumann, P. Leuchtman, and R. Vahldieck, "A generalized local time-step scheme for efficient FVTD simulations in strongly inhomogeneous media ," IEEE Transactions on Microwave Theory and Techniques, Vol. 52, No. 3, 1067-1076, 2004.
doi:10.1109/TMTT.2004.823595

15. Firsov, D. K. and J. LoVetri, "FVTD-integral equation hybrid for Maxwell's equations," International Journal of Numerical Modelling: Electronic Networks, Devices and Fields, Vol. 21, 29-42, 2007.

16. Burkholder, R. J. and T.-H. Lee, "Adaptive sampling for fast physical optics numerical integration," IEEE Transactions on Antennas and Propagation, Vol. 53, No. 5, 1843-1845, 2005.
doi:10.1109/TAP.2005.846813

17. Chatterjee, A. and R.-S. Myong, "Modified finite volume time domain method for efficient prediction of radar cross section at high frequencies," Journal of the Korea Institute of Electromagnetic Engineering and Science, Vol. 8, No. 3, 100-109, 2008.

18. Shu, C. W. and S. Osher, "Efficient implementation of essentially non-oscillatory shock-capturing schemes," Journal of Computational Physics, Vol. 77, No. 2, 439-471, 1988.
doi:10.1016/0021-9991(88)90177-5

19. Shu, C. W. and S. Osher, "Efficient implementation of essentially non-oscillatory shock-capturing schemes II," Journal of Computational Physics, Vol. 83, No. 1, 32-78, 1989.
doi:10.1016/0021-9991(89)90222-2

20. LeVeque, R. J., Numerical Methods for Conservation Laws, Birkhauser Verlag, 1992.

21. Gupta, I. J. and W. D. Burnside, "A physical optics correction for backscattering from curved surfaces," IEEE Transactions on Antennas and Propagation, Vol. 35, No. 5, 553-561, 1987.
doi:10.1109/TAP.1987.1144142

22. Balanis, C. A., Advanced Engineering Electromagnetics, John Wiley and Sons, Inc., 1989.