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Abstract—The Finite Volume Time-Domain (FVTD) method finds
limited application in the simulation of electromagnetic scattering from
electrically large scatterers because of the fine discretization required
in terms of points-per-wavelength. An efficient implementation of
a higher-order FVTD method is proposed for electrically large,
perfectly conducting scatterers. Higher-order and fine-grid accuracy
are preserved, despite using only a first-order spatial accuracy and
a coarse grid in substantial parts of the FVTD computational
domain, by partially incorporating a time-domain Physical Optics
(PO) approximation for the surface current. This can result in
considerable savings in computational time while analyzing geometries
containing electrically large, smooth sections using the FVTD method.
The higher-order FVTD method in the present work is based on
an Essentially Non-Oscillatory (ENO) reconstruction and results are
presented for two-dimensional perfectly conducting scatterers subject
to Transverse Magnetic (TM) or Transverse Electric (TE) illumination.

1. INTRODUCTION

Higher-order, characteristic based numerical schemes are usually used
to solve the time-domain Maxwell’s equations written as a system
of hyperbolic conservation laws in the Finite Volume Time-Domain
(FVTD) method [1–3]. Electromagnetic scattering involving complex
geometries, broad-band signals and diverse material properties can
be dealt with advantageously using the FVTD method [3–6]. In
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spite of these advantages, the FVTD method is rarely used for
engineering applications like predicting the Radar Cross Section
(RCS) of realistic geometries at frequency bands of practical interest.
The major drawback of the FVTD method is the requirement of
large computational time for simulations involving high frequencies.
Rigorous numerical techniques for solving the Maxwell’s equations,
including the popular Finite Difference Time Domain (FDTD)
method [4], share this common disadvantage when dealing with
electrically large scatterers.

The large computational time at higher frequencies is mainly
related to the fine grid required by FVTD and FDTD methods to
contain numerical dispersion errors. The computational grid for FVTD
and FDTD methods can be based on resolutions of 15–20 Points-Per-
Wavelength (PPW) [4], making simulations involving electrically large
scatterers prohibitively expensive. Higher-order numerical schemes
which result in lower dispersion error are traditionally used by
FVTD and FDTD methods to reduce the number of grid points
in the computational domain while maintaining required levels of
accuracy [7, 8]. Solution adaptive grids with variable grid density
can similarly be used to increase computational efficiency, especially
for numerical simulation involving multiple scales, by using optimal
number of grid points. Subgridding is employed in time-domain
simulation of the Maxwell equations to account for subgrid scale effects
in the computational domain [9] using locally refined meshes.

In the present work, an efficient implementation of a higher-order
FVTD method is proposed for simulation of electromagnetic scattering
from electrically large, perfectly conducting scatterers. The spatial
accuracy of the numerical scheme as well as the computational mesh
used in the proposed FVTD implementation are not uniform. The
computational domain is split into multiple regions. Each region either
employs a first-order accurate spatial discretization and a coarse grid
or a higher-order spatial discretization and a fine grid. The overall
accuracy of the solution obtained is shown to be similar to that of a
higher-order accurate FVTD scheme on an uniform fine grid. Overall
higher-order and fine-grid accuracy are preserved, despite using only a
first-order accurate numerical scheme and a coarse grid in substantial
parts of the FVTD computational domain, by partially expressing the
surface current density for the scatterer using an asymptotic Physical
Optics (PO) approximation.

In literature, hybrid methods have been proposed based on the
combination of rigorous techniques like Method of Moments (MOM)
and FDTD with ray or current based high-frequency asymptotic
approaches for increased computational efficiency while dealing with
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electrically large scatterers [10–13]. Increased computational efficiency
for the FVTD method has also been addressed through use of
local time-stepping [14] and hybrid FVTD-integral Equation (15)
approaches. In the proposed implementation, the surface current for
a perfectly conducting scatterer is expressed locally using either only
the incident field (as in a PO approximation) or as a combination
of the incident field and a higher-order FVTD computed scattered
field. The proposed FVTD implementation can also be viewed
as a current based hybrid method in the time-domain combining
FVTD and PO techniques. Previous attempts in literature at
combining FDTD and time-domain PO methods assume the existence
of multiple scatterers of different electrical sizes which are treated
appropriately by either FDTD or PO methods [12, 13]. High-frequency
PO approximations for equivalent surface currents are normally
valid for electrically large, smooth sections of a scatterer. Thus,
the proposed FVTD implementation is directed towards geometries
with smooth, electrically large sections like nose radomes [11] and
reflector antennas [16]. Preliminary related work, reported in [17],
mainly considered FVTD computations on an uniform coarse grid
for electrically large scatterers along with a PO approximation for
resolving dominant specular returns. The proposed implementation is
described in the present work for two-dimensional perfectly conducting
geometries subject to Transverse Magnetic (TM) or Transverse Electric
(TE) illumination. The present work uses an Essentially Non-
Oscillatory (ENO) [18, 19] based spatial discretization with which
arbitrary higher-order accuracy can be achieved. Maintaining an
overall higher-order and fine-grid accuracy, despite using only a first-
order accurate numerical scheme and a coarse grid in substantial
parts of the computational domain, can significantly speed up FVTD
computations for geometries containing electrically large smooth
regions.

2. GOVERNING EQUATIONS

The three-dimensional Maxwell’s curl equations, in the differential
form in free space, can be expressed as

∂B
∂t

= −∇×E (1)

∂D
∂t

= ∇×H− Ji (2)

where B is the magnetic induction, E the electric field vector, D the
electric field displacement and H the magnetic field vector. Ji is the
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impressed current density vector, D = εE, B = µH with ε and µ
respectively the permittivity and permeability in free space.

The time-domain Maxwell’s equations can also be written in a
conservative total field form as

∂u
∂t

+
∂f(u)
∂x

+
∂g(u)

∂y
+

∂h(u)
∂z

= s (3)

where

u=
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(4)

subscripts indicate scalar components in the Cartesian x, y, z
directions. In two dimensions, Maxwell’s equations can be split into
two sets of systems. These are the equations for TM and TE waves.
The two-dimensional conservative form is written as

∂u
∂t

+
∂f(u)
∂x

+
∂g(u)

∂y
= s (5)

The vectors in Equation (5) for the TM waves are

u=

(
Bx

By

Dz

)
, f =

( 0
−Dz/ε
−By/µ

)
, g=

(
Dz/ε

0
Bx/µ

)
s=

( 0
0

−Jiz

)
(6)

while that for the TE waves are

u=

(
Bz

Dx

Dy

)
, f =

(
Dy/ε

0
Bz/µ

)
, g=

( −Dx/ε
−Bz/µ

0

)
s=

( 0
−Jix

−Jiy

)
. (7)

3. NUMERICAL SCHEME

3.1. Finite Volume Time-Domain Method

The FVTD method usually solves the integral form of the conservative
Maxwell’s equations in a scattered field formulation with the incident
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field assumed to be a solution of the Maxwell’s equations in free space.
Integrating the differential form of the conservation law, represented
by Equation (3), in the absence of a source term over an arbitrary
control volume Ω,

∂
∫
Ω usdV
∂t

+
∫

Ω
∇ · (F (us)) dV = 0. (8)

F is the flux vector with components f , g, h in the Cartesian x, y,
z directions with superscript ‘s’ indicating scattered field variables.
Applying the divergence theorem, the integral form of the conservation
law is obtained as

∂
∫
Ω usdV
∂t

+
∮

S
F(us) · n̂dS = 0 (9)

with n̂ the outward unit normal vector. The above integral form is
discretized and solved for in the FVTD method. For three-dimensional
problems, the domain can be discretized into hexahedral cells and
the integral form applied to individual cells. The corresponding
discretization for 2D problems consists of quadrilateral cells. The
discretized form for the kth cell in a three-dimensional cell-centered
formulation is

Ωk
dus

k

dt
+

6∑

j=1

[
(F (us) · n̂S)j

]
k

= 0 (10)

where us
k indicates the volume average of us over cell k and [(F(us) ·

n̂S)j ]k the average flux through face j of cell k. The equivalent two-
dimensional form solved for in the present work is

Ak
dus

k

dt
+

4∑

j=1

[
(F (us) · n̂s)j

]
k

= 0 (11)

where Ak represents the cell area. Equations (10) and (11) represent
generic systems of hyperbolic conservation laws discretized in a finite
volume framework and can be solved using a variety of numerical
schemes [20].

In the present work, the 2D Maxwell’s equations in its
discretized form in Equation (11), are solved using a higher-order
ENO [18, 19] spatial discretization and a second order Runge-Kutta
time integration. The ENO scheme, as in previous three-dimensional
FVTD applications [5, 6], is in the ENO-Roe form [18, 19], which
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efficiently implements the ENO reconstruction based on the numerical
fluxes instead of the cell averaged state variables. This for the scalar
hyperbolic conservation law

ut + f(u)x = 0, (12)

has the spatial derivative at the ith grid point approximated as

∂f(u)
∂x

|i =
1
4x

(
f i+1/2 − f i−1/2

)
+ O (4xq) (13)

where 4x is the grid size, q the order of the scheme, f i+1/2 the
numerical flux function at the right cell-face. The rth order accurate
reconstruction of the numerical flux in the ENO scheme is

f i+1/2 =
r−1∑

l=0

αr
k,lfi−r+1+k+l (14)

where αr
k,l are the reconstruction coefficients and k the stencil index

selected among the r candidate stencils. The stencil Sk can be written
as

Sk = (xi+k−r+1, xi+k−r+2, . . . , xi+k) (15)

and is locally the smoothest possible stencil. Details regarding
reconstruction coefficients and stencil selection for ENO schemes are
widely available in literature including Refs. [18, 19]. Extension to the
two-dimensional system of Equation (5) is obtained by decoupling the
system into three scalar hyperbolic conservation laws normal to the
cell faces [5].

For perfect electric conductors solved for in the present work, the
total tangential electric field n̂ × E = 0 on the conducting surface.
Standard characteristic boundary conditions can be implemented at
the outer boundary with the scattered field variables being taken as
zero in the far field.

3.2. Proposed FVTD Implementation

In the proposed implementation, the current on the surface of an
electrically large, perfectly conducting scatterer is expressed locally
using either the incident field or an appropriate combination of the
incident and higher-order FVTD computed scattered field. The surface
current density vector, in the time-domain for a perfect conductor, is
defined as

Jsur(r, t) = n̂×H(r, t). (16)
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This can be decomposed into contributions from the incident (i) and
scattered (s) fields and written as

Jsur(r, t) = n̂× [
Hi(r, t) + Hs(r, t)

]
. (17)

In the proposed FVTD implementation, the surface of the perfectly
conducting scatterer is divided into FVTD, PO and “transition” parts
based on the evaluation of the surface current. Surface currents
defined for FVTD, PO and transition parts differ based on the local
approximation for the scattered magnetic field vector Hs(r, t) in
Equation (17).

The surface current density for the FVTD part is defined as

JFVTD
sur (r, t) = n̂×

[
Hi(r, t) + Hs′(r, t)

]
(18)

where (s′) indicates the scattered field computed using a higher-order
FVTD method. Approximating the scattered field in Equation (17)
using the local incident field leads to the PO approximated surface
current

JPO
sur (r, t) = n̂× [

Hi(r, t)±Hi(r, t)
]
, (19)

defined for PO parts of the scatterer surface. JPO
sur (r, t) = 2n̂ ×Hi, is

commonly used to approximate the surface current density on smooth
lit parts of a perfectly conducting scatterer in the PO method, with
JPO

sur = 0 in the shadow region. Both these approximations are
combined to form Equation (19) using the ± operator.

The scattered field, in Equation (17), is replaced by a linear
combination of the local incident field and the higher-order FVTD
computed scattered field to yield the surface current in the transition
part. This requires to be implemented differently for TM and TE
waves. For the TE system, described in Equations (5) and (7), the
transitional surface current is defined as

Jtrans
sur (r, t) = n̂×

[
Hi

z(r, t)±
{

ζHi
z(r, t)± (1− ζ)Hs′

z (r, t)
}]

k̂ (20)

with k̂ the unit vector in the Cartesian z direction. The
equivalent transitional surface current for the TM system, described
in Equations (5) and (6), is

Jtrans
sur,z (r, t)k̂ = n̂×Hi(r, t)±

[
ζ

{
n̂×Hi(r, t)

}
± (1−ζ)

{
n̂×Hs′(r, t)

}]
. (21)

The transitional surface current connects the FVTD to either a lit or
shadow PO region. Using +(−) in the ± operator in Equations (20)
and (21) recovers the transitional current between FVTD and lit



240 Chatterjee and Myong

(shadow) PO region. ζ = [0, 1] and Equations (20) and (21) satisfy
Jtrans

sur (r(ζ = 0), t) = JFVTD
sur (r, t) and Jtrans

sur (r(ζ = 1), t) = JPO
sur (r, t)

irrespective of a lit or shadow PO region being referred to.
In the proposed implementation, the surface current density

on smooth lit as well as shadow parts of the perfectly conducting
scatterer can be appropriately defined using the (lit or shadow)
PO approximation JPO

sur . The FVTD computed current JFVTD
sur is

considered to be valid at locations on the scatterer surface where a
basic PO approximation leads to erroneous scattered fields like shadow
boundaries of curved surfaces [21] and edge discontinuities. Jtrans

sur
is used to define the surface current density in transition regions
connecting FVTD and PO currents. In the proposed implementation,
regions in the FVTD computational domain bounded by the scatterer
surface with PO approximated surface currents JPO

sur are evaluated
using a first-order accurate upwind scheme and a coarse grid. A
higher-order ENO scheme and a fine grid is used for the rest of the
computational domain. A first-order accurate upwind scheme is also
obtained by simply invoking the option of a first-order spatial accuracy
in the higher-order ENO scheme used for the rest the domain. The
basic FVTD implementation can be illustrated using the example
of RCS computations involving a two-dimensional, electrically large,
perfectly conducting, circular cylinder. The implementation shown in
Figure 1, has the PO approximation for the surface current valid on lit
and shadow parts of the scatterer, excluding areas close to the shadow
boundary. The computational domain is split into multiple regions
based on the definition of the surface current. In regions 1 and 1’, only
a first-order upwind scheme and a coarse grid is used, with the current
on the bounding scatterer surface appropriately based on lit or shadow-
PO approximations JPO

sur . In regions 2, 2’ and 3, a higher-order ENO
scheme and a fine grid is utilized. The higher-order FVTD computed
surface current JFVTD

sur is used for the scatterer surface bounding region
3. Transitional currents Jtrans

sur are considered to be valid for region 2
and 2’, and appropriately connect PO and FVTD parts of the scatterer.

The coarse grid used in the FVTD implementation can be based
on an average resolution of 2–4 PPW. This is the resolution usually
required on the scatterer surface for a satisfactory numerical evaluation
of the PO integral in order to obtain the scattered far-field from PO
approximated surface currents [16]. This could also be considered
the minimum resolution required in a FVTD (or FDTD) method
to satisfactorily predict the scattered far-field in the absence of any
discretization error. The fine grid used is based on a regular FVTD
resolution of 15–20 PPW [4]. The surface current density is calculated
based on the local definition in the time-domain and complex currents
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Figure 1. Proposed implementation for circular cylinder.

in the frequency-domain computed from the time history using a
Fourier transform. Predicting the RCS requires the scattered field
intensity at infinity which is obtained from complex surface currents
using a near-to-far field transformation [22].

The proposed FVTD implementation is summarized in the
following steps:

1. The scatterer surface is divided into PO (shadow and lit), FVTD
and transition parts based on the evaluation of the surface current
as JPO

sur or JFVTD
sur or Jtrans

sur .
2. FVTD computations are carried out using a first-order upwind

scheme and a coarse mesh for regions in the computational domain
bounded by the scatterer surface with a PO approximated value
JPO

sur (shadow or lit) for the surface current. A higher-order ENO
scheme and a fine grid is used elsewhere in the computational
domain.

3. The surface current is calculated in the time-domain based on the
locally valid current definition.

4. Complex currents, in the frequency domain, on the scatterer
surface, computed using the time history. The scattered field
intensity at infinity calculated from the complex currents using
a near-to-far field transformation.
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r

TM / TE θ

Figure 2. O grid for circular cylinder, schematic.

4. NUMERICAL SOLUTIONS — CIRCULAR CYLINDER

The efficacy of this FVTD implementation is initially demonstrated
at length by computing for RCS of 2D, electrically large, perfectly
conducting, circular cylinders. Results are presented for electrical sizes
corresponding to a/λ = 9.6 and a/λ = 14.4 where a is the cylinder
radius and λ the wavelength of the continuous harmonic incident TE
or TM wave. An ‘O’ type boundary fitted grid is used for FVTD
computations with the number of points in the radial direction always
fixed at 50. The grid is shown in the form of a schematic in Figure 2.
The fine grid at a/λ = 9.6 consists of 800 uniformly spaced grid points
in the circumferential direction corresponding to a grid resolution of
13.3 PPW on the scatterer surface. The corresponding fine grid at
a/λ = 14.4 has a surface resolution of 17.7 PPW and 1600 uniformly
spaced points in the circumferential direction. The higher-order FVTD
method is based on a third-order ENO reconstruction.

4.1. Spatial Order of Accuracy

We initially show the effect of order of spatial accuracy on
computed FVTD solutions for above-mentioned 2D, electrically large
circular cylinders before discussing results from the proposed FVTD
implementation. FVTD results obtained using uniform third-order
or first-order spatial accuracy are compared with basic PO and the
exact or Mie series solutions. The results presented are in the form
of the bistatic RCS (normalized with respect to the wavelength) and
are shown in Figs. 3(a)–(d). θ = ±180◦ indicates the monostatic
point in all circular cylinder bistatic plots. Both first and third-
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order spatially accurate solutions are obtained on “fine-grids” specified
previously for respective values of a/λ. In all the cases considered,
the first-order accurate solution (at these grid resolutions) show
considerable deviation from the exact solution away from very-near-
specular regions. In contrast, the bistatic RCS obtained using a third-
order ENO based FVTD method compares well with the exact bistatic
solution (see Figs. 3(a)–(d)). In the context of the PO technique,
it has been shown that a larger sampling interval can be used for
evaluation of near-specular scattering from extremely large, smooth
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Figure 3. Effect of spatial order of accuracy. (a) a/λ = 9.6, TM, (b)
a/λ = 9.6, TE, (c) a/λ = 14.4, TM, (d) a/λ = 14.4, TE.

structures [16]. This was demonstrated in [16] by computing the
radiation pattern of a large reflector antenna. Present results for
2D circular cylinders, in Figs. 3(a)–(d), similarly indicate that only
very-near-specular scattering can possibly be predicted for similar
geometries using first-order spatially accurate FVTD methods for a
reasonable discretization. The accuracy of the first-order accurate



Progress In Electromagnetics Research B, Vol. 17, 2009 245

FVTD solution rapidly degrades away from very-near-specular regions.
A corresponding behavior is again seen in PO methods when very large,
smooth structures are evaluated using an uniformly large sampling
interval defined on the basis of near-specular scattering [16]. The
effect of discretization on computed FVTD solution is similar to that of
spatial order of accuracy, with FVTD methods on coarse meshes being
able to resolve only very-near-specular scattering accompanied by rapid
deterioration in accuracy away from the specular. Additionally, the
inaccuracy of PO solutions away from near-specular regions, due to
discontinuous modeling of the surface current at shadow boundaries
in the basic PO approximation, is apparent in results for 2D circular
cylinders in Figs. 3(a)–(d). The proposed FVTD implementation is
based on the use of higher-order, fine-grid FVTD computed surface
currents for locations on a electrically large, perfectly conducting
scatterer where the basic PO approximation proves inadequate.

4.2. Efficient FVTD Implementation

We consider an initial FVTD implementation with regions 1 and 1’
bounded by scatterer surface with PO approximated surface current,
evaluated using first-order accurate spatial accuracy but on the same
fine discretization used for regions 2, 2’ and 3 where third-order spatial
accuracy is utilized (see Figure 1). This initial implementation is
referred to as case I. The final FVTD implementation with regions 1
and 1’ evaluated using both first-order spatial accuracy and a coarse
grid exactly as described in the previous section, is termed case II.
Case I (II) is further divided into cases Ia (IIa) and Ib (IIb) based on
size of regions 1 and 1’ in the FVTD computational domain. Table 1

Table 1. FVTD implementation — Cases I and II.

Cases a/λ region 1 region 1’ coarse grid (PPW)
Ia 9.6 [135◦, 225◦] [45◦, −45◦] 14.4 (fine grid)
Ib 9.6 [112.5◦, 247.5◦] [67.5◦, −67.5◦] 14.4 (fine grid)
Ia 14.4 [135◦, 225◦] [45◦, −45◦] 17.7 (fine grid)
Ib 14.4 [112.5◦, 247.5◦] [67.5◦, −67.5◦] 17.7 (fine grid)
IIa 9.6 [135◦, 225◦] [45◦, −45◦] 3.32
IIb 9.6 [112.5◦, 247.5◦] [67.5◦, −67.5◦] 4.43
IIa 14.4 [135◦, 225◦] [45◦, −45◦] 2.12
IIb 14.4 [112.5◦, 247.5◦] [67.5◦, −67.5◦] 2.95
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lists extent of regions 1 and 1’ along with resolution of coarse grid in
terms of PPW on the surface of the circular cylinder for all the cases
considered here (see also Figure 1). The coarse grids in region 1 and 1’
for cases IIa and IIb respectively have resolutions of 3.32 (2.12) PPW
and 4.43 (2.95) PPW on the scatterer surface for a/λ = 9.6 (14.4).
Definitions for case IIa and IIb are listed in Table 1. Transition regions
2 and 2’ measure a few wavelengths on the scatterer surface. Results
presented for case I in Figs. 4(a)–(d) compare the computed bistatic
RCS with exact and third-order accurate FVTD results. The use of
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Figure 4. Case I implementation (first-order on fine grid). (a) a/λ =
9.6, TM, (b) a/λ = 9.6, TE, (c) a/λ = 14.4, TM, (d) a/λ = 14.4, TE.

PO approximated currents on the scatterer surface bounding regions 1
and 1’ preserves an overall third-order accuracy in the computed
results despite using only a first-order spatial accuracy in a majority
of the computational domain. Results in Figs. 5(a)–(d) similarly
show that third-order and fine-grid accuracy are maintained, despite
using only a first-order accurate spatial accuracy and a coarse grid
in regions 1 and 1’ of the FVTD computational domain, by partially
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expressing the surface current using a PO approximation. Most of
the computational cost incurred in the proposed implementation is in
the fine-grid and higher-order accurate FVTD computations required
for regions 3, 2 and 2’ of the computational domain. For the rest of
the computational domain, only a first-order spatial accuracy is used,
and the average resolution can be a fraction of that in the fine grid.
Case II implementation is achieved here at approximately 40% of the
computational cost required for the higher-order FVTD technique on
an uniform fine grid.
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Figure 5. Case II implementation (first-order and coarse grid).
(a) a/λ = 9.6, TM, (b) a/λ = 9.6, TE, (c) a/λ = 14.4, TM,
(d) a/λ = 14.4, TE.

5. NUMERICAL SOLUTIONS — AIRFOIL

The proposed higher-order FVTD implementation is next used to
compute scattering from a perfectly conducting NACA 0012 airfoil
subject to broadside illumination. This is shown schematically in
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Figure 6. The shadow boundary at the rounded leading edge of
the airfoil (θ = ±180◦) is similar to that encountered previously
for the circular cylinder, while the sharp trailing edge (θ = 0◦) can
additionally constitute an edge discontinuity not present for a circular
cylinder. Results are presented for TM and TE illumination for an
electrical size corresponding to a/λ = 10, where a indicates the airfoil
chord length. This problem was also solved by Shankar et al. [1] for
TM illumination. As in [1], a body-fitted grid is employed. The
grid topology is identical to that used previously for the circular
cylinder, is shown in the form of a schematic in Figure 6. In the
absence of an exact solution, results are validated against a “reference”
solution obtained using a third-order ENO based FVTD scheme on
an extremely fine grid consisting of 1600 grid points on the airfoil

TM / TE

θ

Figure 6. Airfoil — Illumination and grid, schematic.
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Figure 7. Airfoil — Case II implementation.
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Figure 8. Scattering from a NACA 0012 airfoil. (a) a/λ = 10, TM,
(b) a/λ = 10, TE.

surface which corresponds to a surface resolution of approximately 80
PPW. The number of grid points in the normal direction is fixed at
50. Case II implementation earlier described for the circular cylinder
is considered for the airfoil. Higher-order FVTD computed surface
currents are defined for the rounded leading edge and the sharp trailing
edge as shown in Figure 7. As for a circular cylinder, region 3 involves
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higher-order FVTD computations on a fine grid with an average surface
resolution of approximately 15 PPW. Transition regions 2 and 2’, which
are few wavelengths long, connect FVTD parts to lit-PO and shadow-
PO parts (see Figure 7). The FVTD method employs first-order spatial
accuracy in PO regions (1 and 1’), where the average resolution on the
bounding scatterer surface is only 3 PPW. Figures 8(a)–(b) compare
bistatic RCS predicted using the proposed implementation with third-
order ENO based FVTD results on an uniform fine grid and the
reference solution. As in the case of a circular cylinder, results obtained
using the proposed FVTD implementation with a PO approximated
surface current valid for substantial parts of the scatterer, compares
well with higher-order, fine-grid FVTD solutions.

6. CONCLUSION

The fine discretization required at high frequencies in terms of points-
per-wavelength result in large simulation times, and seriously limits
use of the FVTD method as an effective engineering tool. An efficient
implementation of a higher-order FVTD scheme is proposed for
computation of electromagnetic scattering from perfectly conducting
scatterers with electrically large, smooth sections. Uniform higher-
order and fine-grid accuracy are achieved in the computed results,
despite using only first-order spatial accuracy and a coarse grid in
substantial parts of the FVTD computational domain, by partially
expressing the surface current using an asymptotic PO approximation.
This can allow for a much faster FVTD analysis of geometries
containing smooth, electrically large sections. This implementation,
described here for two-dimensional geometries, should be readily
extendable to three-dimensional FVTD or FDTD frameworks, and
could be added as an utility in existing FVTD/FDTD codes for
analyzing candidate geometries with electrically large, smooth parts.
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